The purpose of this article was to collate the literature on fungal diseases that occur on seedlings in forest nurseries. It describes the symptoms of the diseases, the infection pattern of each fungus and the possibilities of controlling the diseases. As background a short introduction is given on forests and nursery practices in Finland.
A multi-factor experimental approach and proportional odds model were used to study interactions between five environmental factors significant to Norway spruce (Picea abies (L.) H. Karst.) seed germination: prechilling (at +4.5°C), suboptimal temperatures (+12 and +16°C), osmotically induced water stress (0.3 Mpa and 0 Mpa), prolonged white light, and short-period of far-red light. Temperature and osmotic stress interacted with one another in the germination of seeds; the effect off osmotic stress being stronger at +16°C than at +12°C. In natural conditions, this interaction may prevent germination early in the summer when soil dries and temperature increases. Prolonged white light prevented germination at low temperature and low osmotic potential. Inhibitory effect was less at higher temperatures and higher osmotic potential, as well as after prechilling. Short-period far-red light did not prevent germination of unchilled seeds in darkness. Prechilling tended to make seeds sensitive to short pulses of far-red light, an effect which depended on temperature: at +12°C the effect on germination was promotive, but at +16°C, inhibitory and partly reversible by white light. It seems that Norway spruce seeds may have adapted to germinate in canopy shade light rich in far-red. The seeds may also have evolved mechanisms to inhibit germination in prolonged light.
The effect of photon flux density on bud dormancy release in two-year-old seedlings of Norway spruce (Picea abies (L.) H. Karst.) was examined. The seedlings were first chilled for 0–21 weeks under natural conditions and then forced in a warm greenhouse either in low (15 μEm-2s-1) or in high (300 μEm-2s-1) photon flux density. Occurrence of bud burst was observed in the forcing conditions, and the observations were used for estimating the cumulative frequency distribution of the chilling requirement for growth competence. The estimated distribution had greater variance in the low photon flux density than in the high photon flux density forcing. This finding suggests that unnaturally low photon flux densities during forcing may yield overestimates of the genetic within-population variation in the chilling requirement for growth competence.
The PDF includes an abstract in Finnish.
The writer reports in this discussion article of four stands in Finland that have died due to a bolt of lightning. A death of a group of trees because of lightning has been relatively uncommon for the forest professionals. The trees may not have no lightning marks. The four sites are presented in detail. Characteristic for this type of death of trees is, for instance, that trees have died within a circular area (of usually 30 m of diameter), only conifers have died, trees die from the top down, sometimes marks can be found in trees in the centre of the area, and under the bark may be brown patches or stripes.
A close relationship between photosynthetic capacity and nitrogen concentration of leaves is known to exist. In conifers, nitrogen also affects the pattern of mutual shading within a shoot, which is a basic unit used in studying photosynthesis of coniferous trees. These effects of needle nitrogen concentration on photosynthetic capacity and mutual shading of needles were analysed for Scots pine (Pinus sylvestris L.) shoots taken from five young stands growing on sites of different fertility. The effect of nitrogen concentration on needle photosynthesis was studied based on measurements of the photosynthetic radiation response of shoots from which two thirds of the needles were removed in order to eliminate the effect of within shading.
An increase of one percentage unit in nitrogen concentration of needles increased the photosynthetic capacity of needles by 25 mg CO2 dm-2h-1. The effect of nitrogen on within-shoot shading was quantified in terms of the silhouette area to total needle area ratio of a shoot (STAR), which determines the relative interception rate per unit of needle area on the shoot. Although nitrogen promoted needle growth, an increase in nitrogen concentration decreased the within-shoot shading. This effect resulted from a decrease in needle density on the shoot and an increased needle angle with increasing nitrogen content.
The PDF includes an abstract in Finnish.
Especially in forest vegetation studies, the light climate below the canopy is of great interest. In extensive forest inventories, direct measurement of the light conditions is too time-consuming. Often only the standard tree stand parameters are available. The present study was undertaken with the aim to develop methods for estimation of the light climate on the basis of readily measurable tree stand characteristics. The study material includes 40 sample plots representing different kinds of more or less mature forest stands of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.).
In each forest stand, a set of hemipherical photographs was taken and standard tree stand measurements were performed. A regression approach was applied in order to elaborate linear models for predicting the canopy coverage. The total basal area of the stand explained 63% of variance in the canopy coverage computed from hemipherical photographs. A coefficient representing the relative proportion of Norway spruce in the stand increased the explanatory power into 75%. When either the stand density (stems/unit area) or dominant age of the stand was included into the model, increment of the explanatory power into 80% was achieved. By incorporating both of the preceding predictors, an explanatory power of 85% was reached.
The PDF includes a summary in Finnish.
A study based on four young Scots pines (Pinus sylvestris L.) showed that the number of needle-covered shoots per crown volume unit was independent on tree position representing a constant value of 600–700 shoots/m3. This was true, even though the total shoot number decreased with deteriorating tree position. In tree crown there were fourth-order shoots in good light conditions but only first- and second-order-shoots, when light conditions were poor. The length of shoots decreased in accordance with increasing order of the shoot.
The share of the needle biomass and growth increased, when the shoot order increased. Similarly, the share of needles increased with deteriorating tree position. This was especially true in the upper crown. On the other hand, the share of the crown from the total biomass and growth increased with improving tree position. The percentage of crown system of a dominant tree in a sparse stand was 64% of that of biomass and 83% of that of growth. The corresponding values for a suppressed tree in a dense stand were 36% and 35%. The growth of wood, bark and needles in crown systems was linearly correlated with prevailing light conditions around the branch. It is evident that the tree position and light condition within the stand control the wood, bark and needle growth in the crown system and their interrelationships.
The PDF includes a summary in English.
The needle area distribution and crown structure of a young planted Scots pine (Pinus sylvestris L.) stand are described. The crown structure and crown shape showed apparent regularity in crown structure regardless of stand dynamics. Similarly, the shoot structure and individual needle area showed regularity in the number of needles per branch and shoot length unit, and consequent phytoarea density inside the needle cylinder. Also, the shoot area and needle area distributions were found to show a regular distribution of needle biomass throughout the crown, also inside the crown, in the dominant trees. In the suppressed trees the needle biomass was located in the upper crown and on the surface area of the crown. Estimates of the canopy needle area and distributions are given. The results were applied in calculations of the within-stand light regime. The results correlated well with the empirical results.
The PDF includes a summary in Finnish.
The specific needle area of young Scots pine (Pinus sylvestris L.) showed a substantial within-tree and between-tree variation which was associated with the position of the tree and the position of the whorl as indicated by the prevailing crown and branch illumination. In suppressed trees the values of the specific needle area were three to four times those in dominating trees. A similar morphogenesis was discernible in comparison of the lower and the upper part of the crown. The mean specific needle area value for the whole stand was 184 cm2/g.
The PDF includes a summary in Finnish.
The share of stem, branch and needle growth was dependent on the within-stand light regime in a young Scots pine (Pinus sylvestris L.) stand. The share of needle growth increased at the expense of stem and branch growth in poor light conditions. In good light condition the share of branch wood increased substantially. The share of stem wood growth was greatest in moderate shading, emphasizing the role of an adequate stand density for growing high-quality timber. The basic density of the stem wood was considerably greater in suppressed trees than in dominating trees. The differences were related to the illumination of the crown system.
The PDF includes a summary in Finnish.
Crown and stem growth of young Scots pines (Pinus sylvestris L.) were studied in relation to photosynthate supply and light condition in a stand. The magnitude of needle and bud formation, and radial and height growth were to a great extent dependent on the photosynthate supply. However, in shaded conditions the growth of each characteristics was greater than expected on the basis of photosynthate supply. In the stem system this was especially apparent for height growth. Consequently, height growth was favoured at the expense of radial growth in shaded conditions. It also appeared that the basic density of wood was negatively related to both tree position and photosynthate supply.
The PDF includes a summary in Finnish.
Branching and terminal growth of lateral shoots and needle growth of Scots pine (Pinus sylvestris L.) is investigated as a function of the whorl’s position and age and prevailing light climate. Number of buds per whorl was linearly and positively related to the whorl’s position and prevailing light climate. The growing whorl’s number counting from the apex was associated with declining bud number. The terminal growth of lateral shoots increased exponentially within the values 0.6–1.0 of the whorls position. Under these values the terminal growth was negligible. The growing whorl’s number indicated curvlinear decrease in shoot growth respectively, and only negligible growth occurred when the whorl’s age exceeded 10 years. The shoot growth was linearly related to the prevailing light climate but differences between dominating and dominated trees were apparent. The distribution of needle growth in the crown system was similar to that of shoot growth.
The PDF includes a summary in Finnish.
The structural matter production of selected plant species of a ground cover community was determined in relation to light available for photosynthesis. The resulting functions were applied in a situation where the light reaching the ground cover was controlled by the dynamics of the tree crown strata, and the occurrence of different plant species at different stages of succession was determined on the basis of their production of structural matter in actual light conditions. The possible strategies involved in adaptation to a successional environment have been discussed.
The PDF includes a summary in Finnish.
A quantitative method for determining the annual growth level of plant species has been presented. In particular, attention was paid to the dependence of the growth level on the amount of light available for photosynthesis. A mathematical model for the dependence of structural matter production on photosynthetic production has been presented for some plant species.
The study is based on the assumption that the total amount of annual net photosynthesis plays a role of primary importance in determining the relationship between photosynthetic production and structural matter production. The basic environmental factors determining the photosynthetic rate are light and temperature, if the water and nutrient supply is adequate. The dependence of photosynthetic rate on light and temperature was determined by monitoring the CO2 uptake rate of natural plant populations between the photosynthetic levels of different plant populations with an infrared gas analyser.
The PDF includes a summary in Finnish.
The aim of the present paper was to study the annual production of Pleurozium schreberi (Brid.) Mitt., Hylocomnium splendens (Hedw.) B.S.G and Dicranum polysetum Sw. as a function of light available for photosynthesis. The productivity of the above moss species is studied using the harvested quadrats method in Norway spruce (Picea abies) stands of the Myrtillus site type representing different stand density classes (basal area from 0 to 34 m2/ha) in Southern Finland.
The annual production of each species in different stands was correlated with the amount of light available for photosynthesis i.e. with the photosynthetic production. Functions for the dependence of productivity on light conditions were produced for each species. The individual functions and their ecological significance is discussed. The adaptation of each species to low light intensity is evident since no meaningful addition to production takes place when the photosynthetic light ratio reaches values greater than 0.3–0.4. In other words, the level of photosynthesis which is 30–40% of that possible in the open, provides sufficient supply of carbohydrates or the basic functions of the moss species studied. Pleurozium schreberi and Dicranum polysetum seem to have greater light requirements than Hylocomnium splendens.
The PDF includes a summary in Finnish.
The photosynthetic rate of Pleurosium schreberi (Willd.), Hylocomnium splendens (Hedw.) and Dicranum undulatum (Sw.) grown in plastic containers was monitored with infrared gas analyser in open air under natural weather conditions. It proved that the photosynthetic rate of wet moss cushions was satisfactorily predicted by temperature and light intensity. In dry moss cushions this kind of model gave too high an estimate for photosynthetic rate. Water requirements of each moss species were found to be moderate, and water content of moss cushions limited photosynthetic rate only under serious water deficiency.
The PDF includes a summary in Finnish.
Light intensity inside the canopy varies considerably both in space and time. A new apparatus was developed which is disturbed as little as possible by the above-mentioned variation. The construction is based on the linear relationships between light intensity (measured using silicon diodes) and photosynthesis. This procedure permits linear operations (summing and integration) to be carried out on the output of the diodes without any loss of accuracy. There are five diodes in each assimilation chamber. A model, in which the independent variables include ligth, measured with the present equipment, and temperature, fits the photosynthetic rates well even inside the canopy.
The PDF includes a summary in Finnish.
Water and amount of light are the most important growth factors and the article discusses their relationship. It is knows that the more space is needed by a tree the worse the site is. The number of stems varies between tree species. Common understanding is that amount of light is decisive to self-thinning and regeneration of a stand. On a good site the adequacy of water may substitute the lack of light. However, the fertility of soil and moisture content is more important than light.
The question of the importance of light, soil fertility and water content, as well as their relationship is important when optimizing the forest management.
The PDF contains a summary in Finnish.
Earlier studies have shown strokes of lightning as the reason for 42% of forest fires in Finland. The frequency in northern Finland has been three times higher than in more southern parts of the country or 1.5 times higher than in Sweden. Taking the climatic factors into account these figures don’t seem to be accurate.
The study is based on the statistics about thunders in northern Finland and the information on the forest fires. We know that though there has been a lightning it is not always that the lighting strikes on land and lights a fire.
From the statistics it can be seen that the most forest fires that are thought to be kindled by lightning, have occurred in the same time when there has been thunder and lighting. Thunders and strokes of lightning striking to the land are the most common reason for forest fires during the warmest summer in northern Finland. The knowledge that a proceeding thunder storm may kindle several forest fires in a row must be acknowledged when planning the fire fighting resources.
The volume 34 of Acta Forestalia Fennica is a jubileum publication of professor Aimo Kaarlo Cajander.
The report concludes a series of studies on the early development of young Scots pine (Pinus sylvestris L.) stands. The basis assumption made in the study series was that the within-stand light regime is the main driving force for total tree growth and its allocation of photosynthates for crown, stem and root growth. An individual tree growing in a stand under a varying light regime which is controlled by the stand structure, is the basic unit used in the study. The photosynthesis of an individual tree is determined by the light regime. The stand is formed from individual trees.
The model is applied in simulation of the growth and development of tree stands. Several computer runs representing various densities, height distributions and tree species mixtures were carried out. Potential application areas, properties of the model and future needs of investigations are discussed.
The PDF includes a summary in English.
Two experiments were conducted in Punkaharju and Leivonmäki in the Central Finland in 1966-67 where the spread of the snow blight caused by Phacidium infestans Karst. was investigated in rows of excised branches from a ten-year-old stand of Scots pine (Pinus sylvestris L.). Ericaceous plants (Calluna vulgaris (L.) Hull and Vaccinium vitis-idaea L.) infected with snow moulds were used to determine their influence on the spread of snow blight.
The results show that significant inhibition of snow blight in Scots pine can be achieved with foliage of ericaceous evergreens. The mechanism of this inhibition is an object of conjecture. In healthy ericaceous vegetation it might be caused by saprophytic fungi living on surface of plants or by some constituent of the foliage. In the case of dead ericaceous foliage, the cause of inhibition seems to be the antagonism of other snow moulds. The antagonism of certain saprophytic organism is well known.
The observed inhibition suggests that ericaceous vegetation may be helpful for reforestation by offering a natural control of snow blight, when seedlings of Scots pine do not stand above the surrounding vegetation.
The PDF includes a summary in Finnish.
The aim of this study was to determine if the ascomycete fungus Sphaeropsis sapinea (Fr.) Dyko & B. Sutton (syn. Diplodia sapinea (Fr.) Fuckel) could be cultured from surface sterilized Scots pine twigs presenting the endophytic stage of this fungus. This fungus causes the disease called Diplodia tip blight in conifers. Symptoms become visible when trees have been weakened by abiotic stressors related to temperature, drought and hailstorms. The disease is rapidly increasing and is observed regularly in Scots pine (Pinus sylvestris L.) forests in Europe. Changes in climatic conditions will gradually increase the damage of this pathogen, because it is favored by elevated temperatures and additionally the host trees will be more susceptible due to related environmental stress. Diplodia tip blight is emerging towards Northern latitudes, thus, actions to monitor the spread of S. sapinea in pine-dominated forests should be undertaken in Finland. Our aim was to search for S. sapinea in Scots pine along a transect in Finland. Branch samples were collected from healthy Scots pine, fungal endophytes were isolated and morphologically identified. Sixteen S. sapinea strains were found from four Scots pine trees from two locations. This finding confirms that S. sapinea is found as an endophyte in healthy Scots pine in Finland.
Climate change has been estimated to increase the risk of storm damage in forests in Finland. There is a growing need for methods to obtain information on the extent and severity of storm damage after a storm occurrence. The first objective of this study was to test whether digital photographs taken from aircrafts flying at low-altitude can be utilized in locating storm-damaged areas and estimating the need for harvesting of wind-thrown trees. The second objective was to test the performance of selected estimators. Depending on distances between flight lines, plots on lines and the used estimator, the relative standard errors of storm area estimates varied between 7.7 and 48.7%. For the area for harvesting and volume of wind-thrown trees, the relative standard errors of estimates varied between 16.8 and 167.3%. Using forest area information from Multisource National Forest Inventory data improved the accuracy of the estimates. However, performance of a simple random sampling estimator and ratio estimator were quite similar. Lindeberg’s method for variance estimation based on adjacent lines was sensitive to line directions in relation to possible trends in storm-damaged area locations. Our results showed that the tested method could be used in estimating storm-damaged area provided that the network of flight lines and photographs on lines are sufficiently dense. The developed model for simulations can be utilized also with forthcoming storms as model’s parameters can be freely adjusted to meet, e.g., the intensity and extent of the storm.