Current issue: 58(4)

Under compilation: 58(5)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'light interception efficiency'

Category : Article

article id 5414, category Article
Heikki Smolander, Seppo Kellomäki, Pauline Oker-Blom. (1990). Typpipitoisuuden vaikutus männyn neulasten fotosynteesiin ja verson itsevarjostukseen. Silva Fennica vol. 24 no. 1 article id 5414. https://doi.org/10.14214/sf.a15566
English title: The effect of nitrogen concentration on needle photosynthesis and within shoot shading in Scots pine.
Original keywords: mänty; ravinteisuus; fotosynteesi; kasvupaikkatekijät; verson rakenne; säteilyn sitomistehokkuus
English keywords: Pinus sylvestris; photosynthesis; shading; fertility; site factors; shoot structure; light interception efficiency
Abstract | View details | Full text in PDF | Author Info

A close relationship between photosynthetic capacity and nitrogen concentration of leaves is known to exist. In conifers, nitrogen also affects the pattern of mutual shading within a shoot, which is a basic unit used in studying photosynthesis of coniferous trees. These effects of needle nitrogen concentration on photosynthetic capacity and mutual shading of needles were analysed for Scots pine (Pinus sylvestris L.) shoots taken from five young stands growing on sites of different fertility. The effect of nitrogen concentration on needle photosynthesis was studied based on measurements of the photosynthetic radiation response of shoots from which two thirds of the needles were removed in order to eliminate the effect of within shading.

An increase of one percentage unit in nitrogen concentration of needles increased the photosynthetic capacity of needles by 25 mg CO2 dm-2h-1. The effect of nitrogen on within-shoot shading was quantified in terms of the silhouette area to total needle area ratio of a shoot (STAR), which determines the relative interception rate per unit of needle area on the shoot. Although nitrogen promoted needle growth, an increase in nitrogen concentration decreased the within-shoot shading. This effect resulted from a decrease in needle density on the shoot and an increased needle angle with increasing nitrogen content.

The PDF includes an abstract in Finnish.

  • Smolander, E-mail: hs@mm.unknown (email)
  • Kellomäki, E-mail: sk@mm.unknown
  • Oker-Blom, E-mail: po@mm.unknown

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles