A close relationship between photosynthetic capacity and nitrogen concentration of leaves is known to exist. In conifers, nitrogen also affects the pattern of mutual shading within a shoot, which is a basic unit used in studying photosynthesis of coniferous trees. These effects of needle nitrogen concentration on photosynthetic capacity and mutual shading of needles were analysed for Scots pine (Pinus sylvestris L.) shoots taken from five young stands growing on sites of different fertility. The effect of nitrogen concentration on needle photosynthesis was studied based on measurements of the photosynthetic radiation response of shoots from which two thirds of the needles were removed in order to eliminate the effect of within shading.
An increase of one percentage unit in nitrogen concentration of needles increased the photosynthetic capacity of needles by 25 mg CO2 dm-2h-1. The effect of nitrogen on within-shoot shading was quantified in terms of the silhouette area to total needle area ratio of a shoot (STAR), which determines the relative interception rate per unit of needle area on the shoot. Although nitrogen promoted needle growth, an increase in nitrogen concentration decreased the within-shoot shading. This effect resulted from a decrease in needle density on the shoot and an increased needle angle with increasing nitrogen content.
The PDF includes an abstract in Finnish.
The utilization of direct radiation was studied in five model stands of Poisson-type tree distribution and cone-shaped crowns. The radiation extinction depended on the self-shading of the crown and the shading caused by other trees. The results indicate that at low sun elevation a stand populated by very narrow-crowned trees is most effective in light interception and photosynthesis. At high sun elevation a broad-crowned canopy is best illuminated and most favourable for photosynthesis. A stand with a two-storey canopy is effective in all latitudes when the crowns are moderately narrow. In two-storey canopies the foliage of the lower storey can be better illuminated than in the lower parts of the upper storey, because of the smaller self-shading in the small crowns of the lower storey. A canopy where the crown volume is concentrated on few big crowns is less effective than a canopy consisting of many small crowns.
The PDF includes an abstract in Finnish.
The study deals with the distribution of above-ground biomass of Vaccinium myrtillus L. along the vegetation continuum segregated by using phytosociological classification method composite clustering. The qualitative characteristics of forest sites corresponding to different vegetational clusters were defined on the basis of indirect gradient analysis of vegetation data and description of tree stand properties in stands in 160 sample areas in Southern Finland.
Six vegetation types differing from each other mainly in abundance of the most constant and dominant plant species were formed. Sample areas with rich grass-herb vegetation, as well as sample areas representing comparatively dry, barren site type were clearly separated from other groups of sample areas. Stand characteristics, particularly the proportional distribution of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) seems to be another important factor affecting the vegetation composition.
The lowest biomass values of blueberry were connected with herb-rich vegetation and shady spruce-dominated stands. Comparatively low values were connected to also other spruce-dominated sample areas. Pine-dominant or mixed pine-spruce stands the biomass values were significantly higher. Even if the site quality is essentially equal, the abundance relationships between Vaccinium myrtillus and other components of the ground vegetation may vary in wide ranges and cause difficulties in practical site classification.
The PDF includes a summary in English.
The crown structure and stem growth of Norway spruce (Picea abies (L.) H. Karst.) undergrowth was studied in relation to the prevailing light conditions and potential photosynthesis. Shading decreased the stem height growth more than the length increment of laterals, producing a plate-shaped crown in deep shade. Needles responded to shading by adopting a horizontal inclination in deep shade. The needles were wide and thin respectively in shade. In the open the needle cross-section was almost square. Stem radial growth and height growth were both affected by shading exhibiting a linear response to the prevailing light conditions and the potential photosynthesis. Light conditions under dominating trees were closely correlated with the basal area of the dominating trees.
The PDF includes a summary in Finnish.
The impacts of weed control, ash fertilization and their interaction were tested for the afforestation of former agricultural peat-based soil with Scots pine (Pinus sylvestris L.) in northern Finland in a factorial arrangement of four treatments. Weed control with herbicides was carried out in July 1 and 2 years from planting, and wood ash (5 Mg ha–1) was applied in the spring of the 2nd year. Various vegetation, tree growth and nutrient assessments were made over the 21-year study period. Weed control decreased the weed cover by 36–56 percentage points, vegetation height by 4–26 cm and thus shading of seedlings by vegetation for at least 4 years after planting. For the same period, ash fertilization increased vegetation height by 6–15 cm and shading of seedlings. Weed control reduced seedling mortality by 27 percentage points in 21 years, but ash fertilization had no significant effect. Ash fertilization increased foliar potassium and boron concentrations, but its effect declined, and severe K-deficiency was recorded 21 years after planting. Up to the 9th year, weed control had a greater influence on growth than fertilization. Later the significance of fertilization increased due to an aggravated K-deficiency. Stand volume at year 21 for the untreated control plots was 8 m3 ha–1. Weed control and fertilization increased stand volume by 20 and 35 m3 ha–1, with a combined effect of 55 m3 ha–1. The effects of weed control and fertilization were additive and no significant interactions were found. Due to severe K-deficiencies, re-fertilization of all treatments would be necessary for the continued survival and growth of Scots pine.