article id 197,
category
Research article
Abstract |
View details
|
Full text in PDF |
Author Info
The aim of this work was to analyze how different management schedules with varying initial stand density, thinning and artificial pruning of branches affect the quality, quantity and value of sawing yield in Scots pine (Pinus sylvestris L.). For this purpose, an integrated model system was employed and further developed to simulate: i) the three dimensional structure of the crown and stem of an average tree grown in a stand related to the changes in the within-stand light conditions as caused by the stand management, and ii) the sawing of logs into pieces and their quality grading based on the size and number of living and dead knots on the surfaces of sawn pieces. To maximize the quality of sawn timber, relatively dense stand is desired in the early phase of the rotation to reduce, especially in the lower part of stem, the growth of branches, and to increase the rate of dying and pruning-off of branches. In the later phase, a relatively sparse stand is desired to increase the self-pruning of branches and the occlusion of knots. However, in any case, artificial pruning is needed to maximize the knot-free zone of the stem. Also the value optimization of individual sawn pieces affects the quality and value of sawn timber. Because, only average tree was simulated, the differences between scenarios for stem volume were small. In the future, further model development is needed to analyze the development of crown and stem properties of trees with different status in a stand.
-
Ikonen,
University of Joensuu, Faculty of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland
E-mail:
veli-pekka.ikonen@joensuu.fi
-
Kellomäki,
University of Joensuu, Faculty of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland
E-mail:
sk@nn.fi
-
Peltola,
University of Joensuu, Faculty of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland
E-mail:
hp@nn.fi