A process-oriented tree and stand growth model is extended to be applicable to the analysis of timber quality, and how it is influenced by silvicultural treatments. The tree-level model is based on the carbon balance and it incorporates the dynamics of five biomass variables as well as tree height, crown base, and breast height diameter. Allocation of carbon is based on the conservation of structural relationships, in particular, the pipe model. The pipe-model relationships are extended to the whorl level, but in order to avoid a 3-dimensional model of entire crown structure, the branch module is largely stochastic and aggregated. In model construction, a top-down hierarchy is used where at each step down, the upper level sets constraints for the lower level. Some advantages of this approach are model consistency and efficiency of calculations, but probably at the cost of reduced flexibility. The detailed structure related with the branching module is preliminary and will be improved when more data becomes available. Model parameters are identified for Scots pine (Pinus sylvestris L.) in Southern Finland, and example simulations are carried out to compare the development of quality characteristics in different stocking densities.
A study based on four young Scots pines (Pinus sylvestris L.) showed that the number of needle-covered shoots per crown volume unit was independent on tree position representing a constant value of 600–700 shoots/m3. This was true, even though the total shoot number decreased with deteriorating tree position. In tree crown there were fourth-order shoots in good light conditions but only first- and second-order-shoots, when light conditions were poor. The length of shoots decreased in accordance with increasing order of the shoot.
The share of the needle biomass and growth increased, when the shoot order increased. Similarly, the share of needles increased with deteriorating tree position. This was especially true in the upper crown. On the other hand, the share of the crown from the total biomass and growth increased with improving tree position. The percentage of crown system of a dominant tree in a sparse stand was 64% of that of biomass and 83% of that of growth. The corresponding values for a suppressed tree in a dense stand were 36% and 35%. The growth of wood, bark and needles in crown systems was linearly correlated with prevailing light conditions around the branch. It is evident that the tree position and light condition within the stand control the wood, bark and needle growth in the crown system and their interrelationships.
The PDF includes a summary in English.
The Forest Research Institute of Finland has established permanent sample plots to survey the effect of thinnings on the stands. This study compares the development of tended and natural Scots pine (Pinus sylvestris L.) stands growing on three different forest types: Oxalis-Myrtillus, Vaccinium and Calluna site type. The effect of heavy thinning from below (Oxalis-Myrtillus and Vaccinium site types) and increment felling (Calluna site type) was assessed by dividing the trees of the stands in tree classification classes according to their crown storey and defects.
The results show that thinning from below and increment thinning increase the proportion of trees in the 1st crown storey, which is already large in the natural stands. Also the diameter distribution is more even and the mean diameter higher after the thinnings.
In Scots pine stands in natural state, volume increment per stem is highest in the 1st crown storey and diminishes strongly towards the lower crown storeys. Thinnings increased the increment. The study indicates that many of the objectives of the intermediate cuttings, including promoting the growth of the best trees and improving the quality of the stand, have in general been achieved. Consequently, the thinnings give means to achieve the most valuable yield in the stand.
The article includes a summary in English.
Finnish tree species have adapted differently to heavy snow loads that occur especially in fell areas in Kuusamo and Salla as well as Maanselkä area in Sotkamo and Rautavaara in Northern Finland. Norway spruce (Picea abies Karst. L) is adapted better than Scots pine (Pinus sylvestris L.). The aim of this study was to investigate how crown and stem form of Norway spruce in the snow damage area of Maanselkä area differ from other areas in the same region.
Relatively broad crown at the base of the stem, quickly tapering crown and narrow and even upper crown were typical for trees growing in the snow damaged areas. The higher the altitude is, the stronger tapering the crown is. The tapering begins usually in a height of 4-5 meters. Even the stem diameter begins to taper strongly at this height. In the areas where heavy snow does not cause snow damage, top of crown is broader. Also, in the snow damage areas the damaged trees seem to have broader crown shape than the trees with little damages.
Height of the trees decreases in the snow damage areas compared to forests in lower altitudes, which can be caused both by wind and snow load.
The article includes a German summary.
Norway spruce (Picea abies (L.) Karst.) invading sites is common in Finland. The species tends to establish itself as undergrowth, and takes over when it gets space to grow. To determine whether the undergrowth is suitable as the new generation requires knowledge on the biology of spruce undergrowth. One of the issues is determining the age of the stunted trees. In this investigation, 100 undergrown spruce trees, their crown and their root systems were studied. A method was developed to determine the age of the trees.
The root system of all trees in Vaccinium sites and of stunted trees in Myrtillius sites were superficial. The root systems of older spruces were purely of adventitious origin. The longer the period of stunting growth, the younger is the root system. In addition to acropetal and general adventitious ramification there is often adventitious branching of the roots of pathological causes. Mortality among the long roots is frequent.
A stunted tree has not the same ability as a viable tree to make use of already existing branches for building assimilating surface. When comparing trees with equally large assimilating surface, a stunted tree had greater sum of roots compared to a viable tree. The root system of a stunted undergrown spruce was very superficial compared with the other trees.
The PDF includes a summary in English.
The tree canopy adsorbs part of the rainfall falling on a forest, therefore only part of it reaches the soil. This report presents results concerning interception of precipitation and groundwater level in forests of varying canopy cover. The study belongs to a larger survey on afforestation of drained treeless bogs. The rainfall was measured daily in the open fields and in the adjacent forests. The forests, mainly Norway spruce (Picea abies (L.) Karst.) dominated, were divided by the canopy cover into five classes from over dense to sparsely stocked.
The results show that in a dense, tall Norway spruce stand, light rainfall can almost entirely be adsorbed by the canopy. The heavier the rainfall, the larger proportion of it reaches the ground. Only 30% of a 5 mm rainfall reaches the ground, while 80% of a 20 mm rainfall reaches the ground. Interception of precipitation decreases gradually when the density of the forest decreases. Canopy of Scots pine (Pinus sylvestris L.) and birch (Betula sp.) stands of corresponding density adsorb less rainfall than Norway spruce canopy. Groundwater level was higher in treeless areas than in areas covered with forest. Widescale clear cuttings should, therefore, be considered carefully in forest areas that are prone to become peaty.
The study is based on observations in a Scots pine (Pinus sylvestris L.) stand on a dry upland forest site in Karhumäki, where a 10-15-year old seedling stand grew under a hold-overs of larger trees that had been left in the site in a previous felling. The root systems of 80-120 cm tall seedlings growing around single mother trees were unearthed. Root maps were drawn of the root systems of 120 seedlings.
No seedlings grew around old, large hold-overs. It seems that seedlings could not compete with their root system. If the hold-overs were stunted in their growth, seedlings grew also under the canopy of the mother tree. 90% of the seedlings had a tap root. Rest of the roots grew horisontally in the topsoil. Around a vigorous mother tree, the seedlings grew their roots away from the mother tree. Hold-overs that had belonged originally to the lower canopy layer of the old forest did not have similar effect on the root orientation of the seedlings. Their roots had been previously affected by trees of higher canopy layer, later removed in the felling.
The PDF includes a summary in German.
The aim of the study was to find out what are the causes of damage in Scots pine (Pinus sylvestris L.) stands and the frequency of different kinds of injuries, which are then discussed in relation to the silvicultural state and management of the stands in comparison to ideal forests. Sample plots were studied in over 80-year old Scots pine dominated stands in mineral soil sites of different forest types in Northern Finland in the area of Perä-Pohjola. 10–40 trees were chosen as sample trees in each sample plot. The sample trees were felled, and the diameter, height of crown and injuries outside and inside of the stem were recorded.
Length of knot-free part of the stem was higher in the dominant trees and in older age classes of the trees. The form of the stem becomes broader and rounder with the age. The crowns are, however, longer in Northern Finland compared to Southern Finland. In management of Scots pine stands, all trees diseased by Scots pine blister rust (Cronartium flaccidum) should be removed. The disease is common in Northern Finland, and the number of diseased trees increases as the stands get older. Decay was more common in trees that had fire wounds. In general, injuries decreased the length and diameter growth of the trees. From the dominant trees should only injured and diseased trees removed in the thinnigs. Codominant trees can be left to grow when spare trees are needed to replace missing dominant trees. Detailed instruction of selection of the removed trees are given for each age class.
The PDF includes a summary in German.
The growth of a tree is influenced by inherited properties and external circumstances, including climate, soil, the position of the tree in the stand, and the position of the wood in the stem. The tree species have optimum climate and optimum conditions. The aim of this study was to determine if the summerwood content of the wood of Scots pine (Pinus sylvestris L.) is dependent on the rate of growth of the tree. Comparing the position of the sample trees in the stand, it seems that the position of the tree and the size of its crown influences strongly the quality of the wood. In a dense stand the summerwood content was higher in the trees that had small crowns. Thinning of the stand decreased the difference in summerwood content of the trees.
The PDF includes a summary in English.
Doctor Lauri Ilvessalo modified tree classification developed by professor Gunnar Schotte to develop a tree classification and thinning system that suited Finnish conditions. His system was first applied when the Finnish Forest Research Institute began thinning experiments in a large scale in 1924. The system distinguishes four crown storeys: the predominating crown storey, dominated crown storey, emergent trees and undergrowth. Into the predominating storeys belong dominant trees and co-dominant trees, and into the dominated storeys the intermediate and ground trees. The trees in all the storeys can be divided in to normal trees with well-formed crown and stem, trees with defectively developed crown, trees with defective stem, and injured and diseased trees. The article describes different thinning methods (cleaning thinning, selective thinning from below, selective thinning from above, increment felling, freeing felling) using the tree-classification.
The volume 34 of Acta Forestalia Fennica is a jubileum publication of professor Aimo Kaarlo Cajander. The PDF includes a summary in English.
Crown class is useful tool both in forest management and forest mensuration. The study presents a detailed crown classification for Scots pine (Pinus sylvestris L.). It was used to classify the sample trees prior detailed measurements of the crown and stem form. The stem form of a tree was dependent on which canopy layer it belonged. This relation was detected on both Vaccinium and Calluna site type forests. In addition, the stem tapers faster in poorer forest site types compared to better sites. The shorter the self-pruned part of the stem is, the faster the stem tapers. According to the study, the stems of stunted trees taper faster than trees of other crown classes. Also the age group affects stem form.
The PDF includes a summary in German.