Current issue: 58(5)
There is some evidence to support the hypothesis that crown form of Scots pine (Pinus sylvestris L.) can be inherited either mono- or polygenically. In Finland, a narrow, horizontal whorl-layer structure is striking in about one half of the offspring of a genotype E 1101, ”Kanerva pine”. The offspring are characterized by a narrow crown, short and thin branches at an angle of 90° to the stem, minimal tapering and by numerous long, lateral shoots, long needles and the common occurrence of three-needled fascicles among the dwarf shoots. These features are connected to a high growth rate, a high harvest index and to tortuosity of the stem. It is suggested that this complex of characters is determined by a single dominant gene.
In this study, several offspring of the E 1101 were classified into three form types in seven sets of progeny test data, including progenies of various ages having E 1101 as either maternal or paternal parent as well as open pollinated progenies of second-generation offspring. A segregation close to 1:1 was found both in the first and in the second-generation progenies when wilds and intermediates were combined and compared with Kanervas. The result indicates that the three types of Kanerva form can be due to a single dominant allele (K). Kanervas are heterozygous (Kk) for the allele and wilds are recessive homozygotes (kk) resulting 1:1 segregation in their progenies. However, there were also remarkable deviations from the expected distribution. The differences as well as the inheritance pattern are discussed.
The PDF includes an abstract in Finnish.
Finnish tree species have adapted differently to heavy snow loads that occur especially in fell areas in Kuusamo and Salla as well as Maanselkä area in Sotkamo and Rautavaara in Northern Finland. Norway spruce (Picea abies Karst. L) is adapted better than Scots pine (Pinus sylvestris L.). The aim of this study was to investigate how crown and stem form of Norway spruce in the snow damage area of Maanselkä area differ from other areas in the same region.
Relatively broad crown at the base of the stem, quickly tapering crown and narrow and even upper crown were typical for trees growing in the snow damaged areas. The higher the altitude is, the stronger tapering the crown is. The tapering begins usually in a height of 4-5 meters. Even the stem diameter begins to taper strongly at this height. In the areas where heavy snow does not cause snow damage, top of crown is broader. Also, in the snow damage areas the damaged trees seem to have broader crown shape than the trees with little damages.
Height of the trees decreases in the snow damage areas compared to forests in lower altitudes, which can be caused both by wind and snow load.
The article includes a German summary.