Current issue: 58(5)
A process-oriented tree and stand growth model is extended to be applicable to the analysis of timber quality, and how it is influenced by silvicultural treatments. The tree-level model is based on the carbon balance and it incorporates the dynamics of five biomass variables as well as tree height, crown base, and breast height diameter. Allocation of carbon is based on the conservation of structural relationships, in particular, the pipe model. The pipe-model relationships are extended to the whorl level, but in order to avoid a 3-dimensional model of entire crown structure, the branch module is largely stochastic and aggregated. In model construction, a top-down hierarchy is used where at each step down, the upper level sets constraints for the lower level. Some advantages of this approach are model consistency and efficiency of calculations, but probably at the cost of reduced flexibility. The detailed structure related with the branching module is preliminary and will be improved when more data becomes available. Model parameters are identified for Scots pine (Pinus sylvestris L.) in Southern Finland, and example simulations are carried out to compare the development of quality characteristics in different stocking densities.
Different methods of sowing and planting of Norway spruce (Picea abies (L.) H. Karst.) were compared on fertile sites in North Karelia (62°20’N, 29°35’E, 85–120 m a.s.l.). The planting material were 4-year-old bare-rooted transplants, 2-year-old bare-rooted seedlings, and 2-year-old containerized seedlings raised in plastic greenhouse. The sowing methods were band sowing and shelter sowing. Ground vegetation was controlled during the first growing season mechanically or chemically, or the control was omitted totally.
Planting of spruce gave better results than sowing. After eight growing seasons there were sowed seedlings left in 30% of the sowing pots. The average height of them was 35 cm. Seedling survival was best with large bare-rooted transplants (91%). Survival of containerized seedlings was 79% and of small bare-rooted transplants 71%. The average height of large bare-rooted transplants was 131 cm, of containerized seedlings 86 cm and small bare-rooted seedlings 68 cm.
Sowing is not an advisable method for regeneration of spruce due to the small survival rate and slow initial development when ground vegetation is controlled only once. Also 2-year-old seedlings gave a satisfactory result in regeneration. Seedlings raised in greenhouse were more sensitive to frost damage than seedlings grown on open ground.
The PDF includes an abstract in English.
In soil profiles from a series of uplands of different site types bulk density, density of solids and porosity of soil were clearly related to soil organic matter content and its distribution in the soil profile. Soil organic matter contents were also strongly correlated to effective cation exchange capacity (CEC) and soil acidity. Site fertility was primarily related to the fine fraction (ø<0.06 mm) content in the C horizon and related properties (i.e. CEC). In the humus layer, the content of exchangeable bases and base saturation most strongly related to site fertility.
The PDF includes an abstract in English.
A close relationship between photosynthetic capacity and nitrogen concentration of leaves is known to exist. In conifers, nitrogen also affects the pattern of mutual shading within a shoot, which is a basic unit used in studying photosynthesis of coniferous trees. These effects of needle nitrogen concentration on photosynthetic capacity and mutual shading of needles were analysed for Scots pine (Pinus sylvestris L.) shoots taken from five young stands growing on sites of different fertility. The effect of nitrogen concentration on needle photosynthesis was studied based on measurements of the photosynthetic radiation response of shoots from which two thirds of the needles were removed in order to eliminate the effect of within shading.
An increase of one percentage unit in nitrogen concentration of needles increased the photosynthetic capacity of needles by 25 mg CO2 dm-2h-1. The effect of nitrogen on within-shoot shading was quantified in terms of the silhouette area to total needle area ratio of a shoot (STAR), which determines the relative interception rate per unit of needle area on the shoot. Although nitrogen promoted needle growth, an increase in nitrogen concentration decreased the within-shoot shading. This effect resulted from a decrease in needle density on the shoot and an increased needle angle with increasing nitrogen content.
The PDF includes an abstract in Finnish.
Ring width at breast height is presented as a function of stem radius at breast height, the ratio between the diameter of a tree and the basal area median diameter, site index, and density of stand. By means of a conversion model ring width at stump height can be estimated as a function of ring width at breast height.
According to previous studies substantially better wood quality can be expected if mean width near the pith at stump height decreases from 3 to 2 mm. According to the present study only on the poorest sites suitable for Scots pine (Pinus sylvestris L.) planting (poor Vaccinium type) the ring width is less than 3 mm at stump height even in the thickest trees. On more fertile sites a substantial increase in the recommended planting density is required, if the mean ring width is aimed to be less than 3 mm. On the best sites it is impossible to reach mean ring width of less than 2 mm, when the density is less than 4,000 stems/ha. Only the thinnest trees on the poorest sites can have a mean ring width less than 2mm.
The PDF includes an abstract in English.
The experiment was performed in 1982–85 at the forest tree nursery in Suonenjoki, Central Finland. There were four to five transplanting dates ranging from the beginning of August to the end of September. The dry matter content, root regeneration and needle retention value of Scots pine (Pinus sylvestris L.) seedlings were examined. Development of the needle retention value in autumn was followed in nurseries at Suonenjoki, Rantasalmi, Mäntyharju and Taavetti in 1982.
Root regeneration was usually the worse, the later the seedlings were transplanted in the autumn. The dry matter content was generally lowest in the seedlings transplanted later in the autumn, and also to some extent in the seedlings transplanted at the beginning of August. The needle retention value increased as autumn advanced. Early transplanting in autumn had an adverse effect on the development of needle retention, and the values were highest in the seedlings transplanted later in the autumn.
The PDF includes an abstract English.
The study material consisted of 13 rather old Norway spruce (Picea abies (L.) H. Karst.) and 17 Scots pine (Pinus sylvestris L.) stands located in different parts of Finland. In each stand the seed crops, radial growth and amount of latewood were measured during a period of about ten years. Seed production reduces the radial growth of spruce and pine in the year of seed maturing. In Southern and Central Finland also the proportion of latewood is reduced. Seed production accounts for about 14% of the variation in radial growth of a spruce stand growing in Lapland, and 27% in other parts of Finland. In pine stands the seed crop explains 19% of the variation in radial growth in Lapland, and only 7% in the rest of Finland. In spruce stands an average seed crop reduces radial growth by 14% in Lapland and 5% in the rest of the country. An abundant seed production causes a reduction of about 20%. In southern parts of Finland, the proportion of latewood is reduced by 5% in an average seed year and by 24% in a good seed year. In pine stands an average seed crop decreases the width of annual ring by 5%, and a good seed crop by 15%. Outside Lapland, also the proportion of latewood is reduced: in an average seed year by 5%, and in a good seed year by 16%. The reduction in volume growth of spruce stands due to an average seed crop was estimated to be about 10% in Lapland, and 6% in other parts of Finland. A prolific seed production causes a reduction of 20%. In old pine stands the reduction is 5% in an average seed year, and 15% in a good seed year.
The PDF includes an abstract in English.
The purpose of the study was to determine the effects of the origin of seeds and the location of cultivation of Scots pine (Pinus sylvestris L.) on certain properties particularly important to the pulp industry. The research material consisted of six parallel trials of the same 12 provenances. Increment cores were taken of a total of 1,267 sample trees, 19 years old. The location of the trial site generally affected the properties to a larger extent than the origin of the seed. The effect of the variation of wood density and fibre yield on the cultivation values of the provenances was only a few percentages on average, however, at most the effect was nearly 10%. Eastern Finnish provenances adapted well to western Finnish conditions.
The PDF includes an abstract in Finnish and French.
A method for calculation of the effect of practical fertilization for economic evaluation is presented and discussed. 55 Norway spruce (Picea abies (L.) H. Karst.) dominated stands on Oxalis-Myrtillus type sites were surveyed five to eight years after fertilization with nitrogen (90-170 kg/ha). The relationships between the fertilization effect and various stand characteristics were discussed. Fertilization increased the growth of the stands on an average by 2.2 m3/ha/year. In total the increase of tree growth during the research period was 17.5 m3/ha. This corresponds to a yield of 525–659 FIM/ha.
The PDF includes a summary in English.
Totally 653 battens and planks sawn from butt logsof Scots pine (Pinus sylvestris L.) were chosen from 3 saw mills. The sawn goods were sorted according to normal sorting principles. In order to determine growth rate in the youth, the mean value of the average ring width was measured at the butt end at various distances from the pith.
The average ring width increased as the quality of the sawn goods decreased. The difference between the quality classes in ring width was measured between 2 and 4 cm from the pith. As the size of sawn goods, and, simultaneously, the log size increased, the average ring width increased in a given quality class. Research reinforced previous results, in which slow diameter growth of young Scots pines has been shown to reflect the good quality of sawn goods.
The PDF includes a summary in English.
Early growth of four different tree species (Pinus sylvestris L., Picea abies (L.) H. Karst., Larix sibirica Ledeb and Betula pendula Roth) 16–23 years after planting were compared in a field experiment of 16 square plots established on a stony, grove-like upland (Oxalis-Myrtillus forest type) in Southern Finland. This study gives additional results to the publication Folia Forestalia 386/1979.
At this early stage, the growth of the spruce stand was clearly slower than that of the other species for all parameters to be measured (height, diameter, and volume growth). Height growth was most rapid in the silver birch stand and diameter growth in the larch stand. No clear differences were found in the mean volume of the 100 thickest trees in the stand between the larch and silver birch.
The PDF includes a summary in English.
Young Norway spruce (Picea abies (L.) H. Karst.) are susceptible to early summer frost damage. Birch (Betula pubescens Ehrh.) naturally colonize rich or fairly rich drained peatlands after clear cutting, and can provide protection for developing seedlings. The report describes the development of spruce stands after various types of handing of the birch nurse crops.
Different proportions of birch and spruces did not have any influence on the spruce stand production. In cases where the nurse crop stand is removed when the spruce stand age was 20 years and height 4 m the spruce suffered badly but recovered with time, reaching the spruce stand growing under a nurse stand within the next 20 years. The height growth of spruce depends on the density of the nurse stand, especially on fertile sites. The development of diameter growth also depends on the density of the nurse trees. Removal of the nurse stand in spruce stands on the sites concerned should be done when the spruce stand is 20 years old and at the height of 4 m.
The PDF includes a summary in English.
The effects of variations in the intensity of drainage and NPK fertilization on the natural regeneration and planting results and the subsequent development of seedling stands under various climatic conditions on drained nutrient poor pine bogs was investigated in a 16-year-old study.
Comparison of height development of Scots pine (Pinus sylvestris L.) stands on drained peatlands to that of pine stands growing in mineral soil sites show that in Southern Finland the most efficient forest improvement measures (10 m ditch spacing and 1,000 kg/ha NPK-fertilization) resulted in growth that corresponds a to a height index of a stand in a Vaccinium type site. Less efficient treatment (30 m ditch spacing and no fertilizer) resulted in growth corresponding the development of young stand in a Calluna type site. In Northern Finland the effect of fertilization on height growth was almost negligible. This is possibly due to a decrease in the nitrogen mobilization from south to north of Finland. Thus, it seems evident that fertilization of young Scots pine stands on nutrient poor drained peatlands can be recommended only in the southern part of the country.
The effect of ditch spacing is same in the whole country. The narrower the spacing the better the height growth. In the south planted stands thrive better than naturally regenerated stands, but the situation is reversed in the north.
The PDF includes a summary in English.
The study deals with the distribution of above-ground biomass of Vaccinium myrtillus L. along the vegetation continuum segregated by using phytosociological classification method composite clustering. The qualitative characteristics of forest sites corresponding to different vegetational clusters were defined on the basis of indirect gradient analysis of vegetation data and description of tree stand properties in stands in 160 sample areas in Southern Finland.
Six vegetation types differing from each other mainly in abundance of the most constant and dominant plant species were formed. Sample areas with rich grass-herb vegetation, as well as sample areas representing comparatively dry, barren site type were clearly separated from other groups of sample areas. Stand characteristics, particularly the proportional distribution of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) seems to be another important factor affecting the vegetation composition.
The lowest biomass values of blueberry were connected with herb-rich vegetation and shady spruce-dominated stands. Comparatively low values were connected to also other spruce-dominated sample areas. Pine-dominant or mixed pine-spruce stands the biomass values were significantly higher. Even if the site quality is essentially equal, the abundance relationships between Vaccinium myrtillus and other components of the ground vegetation may vary in wide ranges and cause difficulties in practical site classification.
The PDF includes a summary in English.
Climatological factors determining the natural northern boundary in Europe of oak (Quercus robur L.) were investigated. The natural northern boundary of oak corresponds in detail to the curve at which the growing season, beginning at +5°C in spring and ending at +10°C in autumn, is of a certain constant length. The northern boundaries for more oceanic plants can be explained by prolonged autumn activity. This is obviously the general explanation or the concept of oceanity. Oak spread markedly in Finland in the summers during 1961–1975, which on an average were as warm but much dried than those during 1931–1960. The importance of humidity for oak was discussed.
The PDF includes a summary in English.
The aim of the paper was to describe the development of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) seedling stands on drained peatlands and to find out the principal factors influencing their growth. The material under survey consists of 180 sample plots distributed from southern coast of Finland to the Polar Circle.
The most important growth factors have been the accumulated temperature sum, site quality, drainage intensity and silvicultural condition, such as the density of the stand, the proportion of birch in the stand, and the amount of possible shelterwoods. The influence of these factors, and to some extent the influence of fertilizing, and the disturbing effects of some forest damages, such as frost, growth disturbances and elk damages were investigated. Comparisons of the development in the seedling stands on drained peatlands with the known development of seedling stands in mineral soils were made.
The PDF includes a summary in English.
Needle damages, transpiration, photosynthesis and needle and stem height growth of Scots pine (Pinus sylvestris L.) seedlings treated with dilute sulphuric acid were studied. The acidity of the solution was pH 3. Application of a dilute solution of sulphuric acid equivalent to the normal amount of precipitation occurring during the growing season damaged the surface of two-year-old needles but not that of the current-year needles. A reduction in the photosynthetic rate of 10–30% was observed compared with the untreated seedlings. Transpiration of the seedlings was not affected by the treatment. Needle growth and stem height growth of the seedlings growing on a substrate representing poor sandy soil were reduced. Increased needle growth and stem height growth were characteristic for the seedlings growing on substrate representing fertile moraine.
The PDF includes a summary in English.
Dependence of the growth increase given by fertilization on different stand characteristics is examined in this article. The aim was to determine whether the volume growth increase can be accurately determined beforehand when fertilization is carried out on mineral soil sites at a dosage of 120 kg N/ha. The material consisted mostly on of mature stands ready for cutting, a total of 22 Scots pine (Pinus sylvestris L.) and 20 Norway spruce (Picea abies (L.) H. Karst.) stands. Increase in basal area, height quality class and basal area of the stand were found to best explain the increment and its increase in the regression equations calculated for different types of fertilizer and the control level.
The PDF includes a summary in English.
The paper describes an attempt to determine whether ammonium, nitrate and urea nitrogen are bound in peat used as a filling material in containerized seedling production, what is the effect of the nutrients on certain chemical properties in the peat, and what is the effect of the nitrogen fertilizers on the primary growth of containerized (paper-pot VH 608) Scots pine (Pinus sylvestris L.) seedlings in connection with planting out. The seedlings were fertilized with ammonium sulphate, potassium nitrate and urea.
The results show that none of the fertilizers used were bound in the peat. The nitrogen content in the above ground part of the seedlings increased clearly. Fertilization with ammonium sulphate resulted in the greatest increment and this increase appears to be permanent. The wintering process was somewhat delayed by the fertilization. The seedling mortality rate for all the treatments has been quite appreciable. However, fertilization particularly with ammonium sulphate on the poorer of the two sites studied has had a positive effect on seedling survival. Furthermore, it appears that fertilizer treatments have decreased growth after planting, but in the case of ammonium sulphate this decrease has changed into a clear growth increment.
The PDF includes a summary in English.
The paper deals with variation in the nitrogen, phosphorus, potassium, calcium and magnesium content of vegetation and soil of young Scots pine (Pinus sylvestris L.) stand of Vaccinium site type situated in Central Finland. The material consists of sequential samples representing soil, ground vegetation and trees taken during summer 1974.
The amount of soluble nutrients in the humus layer decreased in June when maximum growth of trees and dwarf shrubs occurred. The nutrient content of this layer subsequently began to increase towards the end of the growing period.
The variation in the nutrient content of the bottom and ground layers followed a similar pattern. Nitrogen content increases at the beginning of the summer. After this phase it started to decrease and reached its lowest values by the end of growing period. Phosphorus and potassium content increased throughout the growing period.
The nutrient content of the needles and wood were positively correlated with tree height and negatively with the age of material. The highest values for the nutrient content were for new cells.
The PDF includes a summary in English.
In this article, information about tree growth which was familiar to the learned men in the old days is presented. The time when different tree species start growing, the different growth rate of various tree species, the age of trees, their resistance to injury etc. are discussed.
The PDF includes a summary in English.
The ash content has been found to correlate with the fertility of peatlands. Relationship between height of 80-year-old stands and ash content of peat in topmost 30 cm layer was examined in Lithuanian conditions. On drained peatlands with ash content of peat from 3% to 8% pine stands increase in height. Ash content of peat being about 7% Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) stands on drained sites are found to be of equal height. Ash content of peat more than 8–9% has no significant effect on growth of pine or spruce stands. Birch (Betula verrucosa (B. Pendula Roth.) and Betula pubescens Erhrh.), stands are less sensitive to ash content of peat compared with other species. Black alder (Alnus glutinosa L. Gaertn.) stands occurred in sites with ash content of peat more than 8–10%. The height of the stands become equal both in drained and undrained sites in the cases where ash content of peat is about 16–18%. Ash (Fraxinus exelsior L.) stands attain high productivity on drained sites with ash content of peat about 20%.
The PDF includes a summary in English.
The paper describes the results obtained from an investigation into the effect of ditch spacing, ditch depth and furrowing on ground water table and on development of a Scots pine (Pinus sylvestris L.) plantation on open small-sedge bog in Central Finland (60° 50’ N; 24° 20’ E), drained in 1967. The area was planted in 1968 with 2+1 Scots pine transplants, and fertilized with Y fertilizer for peat soils. The seedlings were measured in 1972.
The depth of the ground water table was greater, the narrower the ditch spacing. The water furrows shortened the duration of the high ground water and lowered the ground water table particularly in the case of ineffective drainage. The narrower the ditch spacing within the blocks, the higher were the young trees. On the other hand, the differences in the height of the trees between the ditch spacings were eliminated by the effect of the furrows.
The PDF includes a summary in English.
The effect of spacing on the first-year yield and height increment of Alnus incana (L.) Moench, Populus tremula L. x Populus tremuloides Michx. (Populus x wettsteinii), Salix ’Aquatica Gigantea’, and Salix phylicifolia L. was studied at the Arctic Circle Agricultural Experimental Station in Northern Finland. S. ’Aquatica Gigantea’ gave yields which were twice as high as those of the other species in the study. The highest yields were of the order of 60 tons per hectare (fresh yield including foliage). The annual height growth in S. ’Aquatica Gigantea’ was about 100 cm, in the others about 30–50 cm. S. ’Aquatica Gigantea’ had a maximal height growth when the distance between the seedlings was 25 cm.
The PDF includes a summary in English.
The aim of the study was to assess, through field experiments, the possibilities of using peat briquettes in the seeding of Scots pine (Pinus sylvestris L.) in Southern Finland. The briquettes were dug into the soil in the middle of patches of mineral soil. The seeds were covered by a 2-5 mm layer of mineral soil. The seedings were inventoried in the three following autumns.
According to the results, the briquettes were clearly inferior to the control, which was ordinary drill seeding. This was mainly due to the fact that no rain was received after the seeding, and that the third summer from seeding was extremely dry. Abundant germination was observed during the second summer after seeding in both briquette seeding and the control. During more rainy summers the result might have been better.
The PDF includes a summary in English.
About one million hectares of forests are fertilized annually in Finland. The goal of the present study was to find out, by means of calculations, how the profitability of forest fertilization varies with variations in the stage of development of tree crops, the quality of the site and its geographical location. Calculations concerned bot fertilization of forests in mineral soil sites and in drained peatlands. The study is a part of a larger project concerning the order of profitability of different forest improvement measures in different conditions. The problems dealt with in this study were approached from the point of view of national economy.
On the basis of two empirical materials it is shown that there is a high correlation between the stand growth percentages before and after the fertilization. Applying the results to existing yield tables the authors calculate benefit/cost ratios showing the stage of development of the stand, the quality of the site and its geographical location. According to the results, fertilization is more profitable in sites of medium fertility than on poor sites. Profitability decreases rather fast from south to north and with decreasing timber prices.
The PDF includes a summary in English.
The purpose of this study was to compare the development of Scots pine (Pinus sylvestris L.) seedlings sown on substrates off milled peat and milled bark. Mille peat, ordinary milled bark, milled inner bark waste, and a mixture of milled peat and milled bark in the ratio of 1:1, were all compared in the plastic greenhouse. In addition, two fertilization applications were used with milled park: ordinary surface fertilization and double surface fertilization. The germination and development were measured twice during the summer.
It is concluded that milled bark seems to be a rather useful substrate for use in plastic greenhouses, as long as its special requirements are taken into consideration. In the first measurement, there were no differences between the treatments, in the second measurements seedlings growing on a mixture of peat and bark were slightly more developed than the others. Growth of the seedlings was slightly better in ordinary milled bark. Double surface fertilization increased disease and mortality compared to ordinary fertilization.
The PDF includes a summary in English.
The aim of this study was to estimate the genetic gain of volume growth in Scots pine (Pinus sylvestris L.) selected seed stands. To obtain highest possible accuracy, the estimations are based on a large statistical material comprising 197 separate seed stands. It is concluded that the genetic gain of volume growth ranges between 7.4–15.0%. Unwanted pollen contaminations may, however, in the worst case halve this genetic gain.
The PDF includes a summary in English.
The paper describes the results of a fertilization experiment, in which transplants of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) were fertilized with various doses of fine-ground copper rock phosphate (33% P2O5, 4% Cu) placed direct in the planting hole. The experiment was made in northeast Finland on a clear-cut, burnt-over and furrowed moraine heath. The fertilization increased especially the survival and condition of the Scots pines and increased to some extent also the height growth of the plants. The spruce survived better than the pines.
The PDF includes a summary in English
The study material included 600 Scots pine (Pinus sylvestris L.) grafts from the Tohmajärvi seed orchard in Eastern Finland. Their broad sense heritability for the height growth was 0.92, for the number of branches 0.87 and for the angle of branching 0.84. Grafts from Central Finland had cones more often than the southern ones, the frequencies being 26.3% and 11.2%. It seems that dominance plays a significant role in the genetical variation of this seed orchard and that height growth is probably more rewarding breeding characteristic than quality, the difference being small, however.
The PDF includes a summary in English.
About 4,000 seedlings of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) were planted in 1965 both on a clear-cut and sheltered area in Central Finland. In the autumn of 1966 needle colour was determined by using Muncell Color Charts which allowed a quantitative measurement of three colour dimensions (hue, value, and chroma). Terminal shoot growth was recorded for two years after colour measurements. In both species, fertilization (NPK in the spring of the year of colour measurement) as well as other site factors caused differences in all three dimensions of needle colour. A regression of shoot growth on needle colour was found in both species. In most cases colour value (darkness) and, in spruce, also chroma, predicted the subsequent growth almost as well as did these two-colour variables together.
The PDF includes a summary in English.
Scots pine (Pinus sylvestris L.) seedlings were stored for five days in an ordinary wood shed. One half of the seedlings were planted out directly, and another half after soaking the roots of the seedlings for 3–6 hours in water to compensate the possible water deficit developed. According to the results of the experiment, the effect of watering was extremely small. The difference observed, which was in favour of the trees that had been watered during storage, was discernible only in the needle length and in the number of lateral buds; in mortality or in the growth of the seedlings no difference could be observed.
The PDF includes a summary in English.
Experiments were carried out to find out the effect of fertilizer application on germination, seedling emmergnece and initial development in conifer plantations established on peat by sowing, with a special reference to Scots pine (Pinus sylvestris L.). The experiments were carried out in 1968–70 in laboratory, in greenhouse and in the field.
In the greenhouse experiments with Y fertilizer for peat soils (14% N, 18% P2O5, 10% K2O) it was shown that germination and seedling emergence decreased markedly with increased fertilizer application. Mortality among seedlings that had emerged was the higher the larger quantities of fertilizer had been applied. The effect of fertilization was the greater, the drier the substrate. Fine ground rock phosphate (33% P2O5) promoted seedling emergence on a dry substrate but not on a wet one.
The field experiments carried out in Central Finland included dry and wet sites. Y fertilizer, Oulu Saltpeter (25% N), fine-ground rock phosphate and potassium salt (50% K2O) were used. According to the results, easily soluble fertilizers decreased seedling emergence. On wet sites the effect of Y fertilizer was weaker than on drier sites. Fine-ground rock phosphate slightly increased the number of seedlings emerging. Height growth was increased during the first three growing seasons only by those fertilizers containing phosphorus.
The PDF includes a summary in English.
The paper describes the results obtained from an experiment of fertilization of drained treeless peatlands in connection of planting in three sites in Central Finland. Scots pine (Pinus sylvestris L.) seedlings 2+0 was used. The fertilizer (Y-fertilizer for peat soils, 14% N, 18% P2O5, 10% K2O) was applied in rates of 0, 20, 40 and 80 g/transplant. The fertilizer was strewn either around the plant within a circular patch of 20 cm in diameter, in a ring with a radius of 10 cm and in a ring with a radius of 20 cm. The seedlings were measured two and five years after planting.
The greater the quantity of fertilizer applied and the closer it was applied to the plant the higher was the mortality of transplants. Fertilization increased the mortality during the first two growing seasons after application. Later, however, the mortality decreased to a similar level irrespective the way the fertilizer was applied. In the beginning of the second growing season the fertilized plants showed considerably better height growth than the control plants. The smallest quantity of fertilizer applied produced almost full increase in growth. The pattern of application of the fertilizer had little effect on the growth.
It was concluded that a use of small amounts of fertilizer can be recommended in connection with planting and that it should not be applied very near the seedlings.
The PDF includes a summary in English.
The aim of the present study was to increase the knowledge of the anaerobic conditions prevailing in virgin peat soils of different kinds, and on the fluctuation of the aerobic limit. Silver rod method was used to indicate anaerobic conditions and to locate the aerobic limit. The material included 18 peatland sample plots on treeless bogs, in pine bogs and in spruce swamps in Southern Finland. Observations of the discoloration of the silver rods and measurements of ground water level were made from 8 June to 13 August 1968.
The results show that the location of the aerobic limit is dependent of the depth of the ground water table, and usually lies 5–15 cm above the ground water table. Down to 10–20 cm below the aerobic limit, where it reaches maximum, the rate of decomposition of sulfurous organic matter is positively correlated with the distance from the aerobic limit. Deeper it gradually decreases, and in the depth of 25–35 cm no hydrogen sulphide seems to be released.
In the forested peatland types the volume of the growing stock and the increment were dependent on the depth of the aerobic limit only when nutrient content and pH of the peat was more or less constant. Where the aerobic limit was close to the ground surface but the nutrient contents were relatively high, the volume of the growing stock may be comparatively high. Birch (Betula sp.), better than the conifers, is able to stand conditions poor in oxygen. The growing stock was poor in sites where the aerobic limit was near the ground surface, but the nitrogen and phosphorus contents were high, or vice versa. Consequently, aerobic limit is of great importance as an indicator of site quality.
The PDF includes a summary in English.
The study was carried out in order to establish the possible influence of damage caused to the needles of Picea abies (L.) H. Karst. by the spruce spider mite, Oligonychus ununguis (Jacobi), and the growth of the damaged seedlings. The study was carried out in 1968–1970 by comparing growth of seedlings infected with spruce spider mite with that of seedlings where mites had been killed with acaricide (Eradex®). In the seedlings that had not been treated with acaricide, the number of wintering eggs were 60, 20 and 5 per shoot in the various years of the study. When the experiment was laid out, before planting and acaricide treatment, the seedlings were four years old, all seadlings were heavily infected, the number of wintering eggs being 100 per shoot. The growth of infected seedlings was 3, 20 and 15% smaller than that obtained for the seedlings which had been treated with acaricide.
The PDF includes a summary in English.
Field experiments of Scots pine (Pinus sylvestris L.) was established by planting seedlings grown from seeds collected from open-pollinated plus trees throughout the country. The 36 progenies represented were planted in 4 blocks as 2+2 transplants in 1960. The main characteristics of the seedlings were measured in 1966 and 1968. Considerable damage had been caused to the stands by moose (Alces alces) and Melampsora pinitorqua Rostr., consequently, therefore, only normally developed seedlings were measured.
Highly significant differences between progenies were found in the number of branches in 1968 and in the ratio of height of tree to the length of the longest branch. In 1968, the differences in height between progenies were not significant, but there were significant differences between blocks both in tree height and length of terminal shoot. Obviously, the edaphic heterogeneity of the site has influenced mainly the juvenile growth of the plants, because in the length of the terminal shoot there could be seen also significant differences between the progenies. There were no significant differences between the progenies in the length of the longest branch, in the angles of the thickest branches, in stem taper and in the diameter of the thickest branch.
The PDF includes a summary in English.
Clone stands of bracken fern (Pteridium aquilinum (L.) Kuhn.) wood small reed (Calamagrostis epigeios L.) and lily-of-the-valley (Convallaria majalis L.) are often partly split into two by the road, but often encountered also unilaterally on the roadside in the shape of a semicircle. The unilateral stands can be at times 20–30 m wide and they are sometimes solitary stands of the species. A method to define the age of the solitary stands of six plant species including bracken, wood small reed and lily-of-the-valley was developed in a series of earlier studies.
These stands can be used to define the time the road was built. Clones that are bound by the road unilaterally are younger than the road. If there are several unilateral clones and they are of different sizes, the road is older than the largest clone. When the road is skirted bilaterally only by clones divided by the road, it is younger than the smallest clone. When there are by the road side both unilaterally delimited clones and clones split by the road, the age of the road comes in the range of time determined by the age difference between the largest unilateral and smallest bilateral clone.
The PDF includes a summary in English.
This paper presents the results of a contest performed on behalf of the Finnish bank Kansallis-Osake-Pankki and the Central Forestry Board Tapio on growing trees on peatlands. Over 5,000 sample plots were established on drained peatlands in various parts of Finland. The aim was to achieve a best possible growth of seedling stands on peatland. The factors influencing the growth of 85 best Scots pine (Pinus sylvestris L.) and 60 best Norway spruce (Picea abies (L.) H.Karst.) sample plots were studied.
The height growth of the seedling stands decreased towards the north. Fertilization seemed not to decrease the regional differences; rather on the contrary. On the other hand, fertilization increased height growth, but evidently so that the increase obtained was greater in the southern than in the northern parts of the country. Light fertilization (50 kg/ha of K2O and 60 kg/ha of O2P5) caused a clear increase in height growth while heavy fertilization (100 g/ha of K2O and 120 kg/ha of O2P5), had same effect but to much greater extent than the former. Spruce seedling stands in particular benefitted of the heavy fertilization.
Fertilization did not eliminate the original differences in the quality of the sites in question, but these could still be seen in the height growth after fertilization. The effect of drain spacing on the height growth was not very clear. In dense seedling stands (800 seedlings/ha) the height growth of the dominant seedlings was greater than that obtained in stands of lower density. Hold-overs caused a decrease in the growth of the seedling stands.
The PDF includes a summary in English.
The aim of the study was to investigate the effect of four packing methods on the field survival and growth of seedlings and transplants of Scots pine (Pinus sylvestris L.) stored over the winter in a cold-storage cellar. The following sorts of plants were used: one-year-old seedlings (1+0) grown in a plastic greenhouse, two-year-old (2+0) open grown seedlings and three-year-old open grown transplants. These plants were stored in open wooden boxes, in sealed plastic bags, in boxes with wet peat on the bottom and in plastic-laminated paper bags.
The control plants were of the same types and were kept in a nursery over the winter. The storage was carried out in a mantle-chilled cold-storage from October 1966 to May 1967. The temperature in the cold-storage was kept around -2 °C and the relative humidity of the air over 90%. The water content of a randomly selected sample plants showed no increase in water deficit after the storing. Part of the seedlings were transplanted in the nursery and the rest were planted in a clear-cut area. A number of the latter plants were treated with an insecticide (1% Intaktol, which contains DDT, Lindane and dieldrin) before planting. All the experiments were examined after one growing season and the planting experiments the next fall.
The transplants (2+1) in the nursery, and in the forest had survived and grown better than the seedlings. In the nursery the 1+0 seedlings survived and grew better than the 2+0 seedlings. There was no difference in mortality between the seedlings. After the first growing season occasional significant differences between the packing methods were observed, but they disappeared during the second growing season. Thus, all packing methods proved to be as successful as the control method without winter storage.
Transplants were more often attacked by the large pine weevil (Hylobius abietis L.) than the smaller seedlings. The damage, however, was considerably greater on the seedlings because of their lower resistance. No significant differences in the Hylobius-attack between the packing methods could be observed. The Intaktol-treated plants were as often attacked as the untreated ones, but the damage was slighter on the treated ones.
The PDF includes a summary in English.
The purpose of the present study is to throw light on the termination of diameter growth of Scots pine (Pinus sylvestris L.) in old age in northernmost Finnish Lapland. The material consists of thirty over-mature, dying or already dead standing trees grown in natural state. In 1907 the stand was marked for cutting, but the harvest was never carried through. Now the old labels served as a means for cross-dating the year of the final termination of growth.
It was found that as pine becomes senile its annual ring formation becomes incomplete. At first diameter growth stops in the middle part of the stem, then at the butt end, and at last on the canopy level. No correlation between the mean temperature of July and the dying of the tree was found. The average age for dying for the pine in the stand was 420–450 years. After the tree has died it takes about 35–40 years before it has become a silvery, branchless dead bole.
The PDF includes a summary in English.
The present paper is a preliminary report of a project designed to determine the order of profitability of various forest improvement measures – seeding and planting, drainage, and fertilization – in various types of stands and in different parts of the country on drained peatlands. Sample plot data on the effect of draining on increment was derived from areas drained 28– 36 years ago. The study was carried out in the southern half of Finland.
The observations on increment changes are based on two measurements of the sample stands 12 years apart. Supplementary calculations indicate that the stands on drained peatland, depending on site quality and tree species, have either continued to grow like mineral-soil sites of similar fertility or have somewhat increased their growth rate.
The effect of draining intensity was studied using strip measurements. It was found that both the total amount of wood produced (current stand + cutting removal + natural removal) and the current annual volume increment for the 5-year period systematically decrease as the ditch interval increases. The decrease is, however, relatively slight. In Eriophorum vaginatum pine swamps, the total amount of wood produced and the increment show a decrease of ca. 20% with an increase in ditch interval from 20 to 60 metres. In other sites, the decrease is ca. 5-10%
It can be concluded that if the increase in ditch interval do not result in considerably poorer timber assortment distributions than indicates by stand production and increment, it is profitable to pan for a relatively large ditch interval and a slightly smaller than maximum wood production. Supplementary data and check calculations may cause some changes in these preliminary results.
The PDF includes a summary in English.
This lecture discusses the problem of the annual variation in Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.), and its significance. A newly constructed instrument for field measurements of diameter growth is described, also the latest of the Royal College of Forestry’s series of machines for annual ring measurement. The method of constructing an annual ring index is also mentioned.
Examination of material from undisturbed stands in Northern Sweden has shown that the annual ring index series for pine are characterised by a relatively marked autocorrelation, which increases with latitude, implying that the annual ring index for a given calendar year is positively correlated with that for the year immediately preceding it. However, this seems not to be so in spruce, in which the annual ring index series is marked by the effect of the changes in cone production from the year to year. The annual ring index for spruce may be expressed in the form of climatic functions, according to which the index can be approximately calculated or known values of the meteorological variables contained in the function, in association with numerical expressions for the cone production. By means of a number of examples illustrating annual ring series from thinned stands. It is shown finally how the response to thinning can be presented in a more essential form from the variation in the annual rings, and how climatically corrected increment can be determined.
The PDF includes a summary in English.
When the seed harvest of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) are low, pine and spruce buds are among the secondary food items of squirrel (Sciurus vulgaris L.) in Finland. In this study, conducted in Nokia in Southern Finland in 1962-1963, eating of pine buds by squirrel is described. The eaten buds in 15-years old Scots pine seedlings were recorded in two seedling stands.
According to the results, the squirrels selected the largest buds of the best seedlings in the studied stands. In over 50% of the cases the squirrels chose only the buds of the leading shoot, especially the terminal bud. In half of the trees, a side bud of the leading shoot continued the growth, which causes form defects in the trees. In 35% of the damaged trees, a lateral branch continued the growth. Well-growing seedling stands may be especially susceptible for damages caused by, for instance, squirrels.
The PDF includes a summary in Finnish.
The many unsolved questions concerning fertilization makes it difficult to forecast accurately its biological and economic consequences. Some of the problems are discussed in this paper. The most common types of forests in Sweden, Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) stands on well-drained mineral soil, respond strongly to nitrogenous fertilizers, but the effect of phosphate, potash or lime is small or nil, at least within 5–10 years after application. The response of nitrogen lasts 4–5 years in pine and somewhat more in spruce.
Drained peatlands usually respond to mineral fertilization, but the improvement brought about by a PK application depends, inter alia, on the nitrogen content of the peat. Peatlands with a peat low in nitrogen need NPK fertilization. For deep peatlands, a moderate or high nitrogen content, a single PK application improves growth conditions for a very long time. Experience of fertilizing shallow peatlands and poorly-drained mineral soil is very limited, but it seems easy to get a growth response either with nitrogen alone or with NPK.
The results of fertilization at the time of planting have not, as a rule, been very good in Sweden. An exception is the afforestation of abandoned fields on drained deep peat, where PK fertilizer around the plant seems to be essential for both survival and growth.
The present study is an attempt to clarify the decrease in growth, or the increment loss, caused by sudden reduction of growth of the growing stock below a certain level, and to find a method for its determination. Increment loss is defined as a decrease in growth during the rotation due to a deficient stock volume. The material consists of Koivisto’s yield tables for repeatedly thinned stands in Southern Finland, and the results of the Third National Forest Inventory concerning the mean volume and increment in the productive sites.
For the calculation of increment loss three formulae were constructed where the increment loss is calculated 1) as the difference between the removal by thinnings in normally developed stands during a time equal with the period of deficient stock and the suddenly removed stock, 2) according to the compound interest calculation principle as the sum of the differences which are obtained by subtracting from the removal in each thinning during the period of deficient stock its initial value, and 3) as the straight interest of the stock deficiency during the period of deficient stock.
According to the calculations, the increment loss is greatest in stands to be grown, viz. 50 m3 solid measure excluding bark per hectare tended Norway spruce stands on Oxalis-Myrtillus type sites at 40% deficiency below minimum stock. In stands to be regenerated the losses are, too, greatest in the similar stands. It exceeds 200 m3/ha when stands younger than 50 years have to been regenerated and the removal amounts to 50% of the stock. In stands to be regenerated the increment loss for spruce, due to the slow initial development by the species, is greater than for Scots pine and birch. The loss is the same at different period of age if the relative deficiency of the stock is of equal size.
According to the study, each stand has a characteristic variation in the increment loss which depends mainly on the relative degree of deficiency from the minimum stock. The formulae and methods can be used to determine the increment loss in average and better stands in Southern Finland when the stock suddenly decreases.
The PDF includes a summary in English.
No other manifestation of life is allied more conspicuously to the theory of relativity as the growth of forest stands which is a function of the inherent growth potential of trees, the productive capacity of environment, and time.
The height over age quotient of a forest stand is usually the most reliable indicator of the productive forces of the habitat. Stem analysis have shown that increment of a tree at different ages is closely correlated with the extension of roots into individual geological horizons of different productive capacity. Growth curves of stands of a same tree species growing on different soils can be disparate due to different conditions. The temporal variety of tree growth on different sites is of prime importance in the construction of yield tables. Investigations of natural plant communities of Finland provided one rational approach towards the construction of yield tables. By confining mensuration analyses to define floristic types, the Finnish foresters harmonized their records with Einstein’s formula for space-time matrix of material events.
The paper is a review on the topics of Symposium on forest types and forest ecosystems, held in connection to the IX internal botanical congress in Montreal in August 1959, the chairman of which was Ilmari Hustich. The article includes 18 preparatory papers that were distributed among the participants of the symposium. The common theme of the papers was the question of finding common platform for the different schools of forest types and forest ecosystems. In addition to the papers, the article includes a summary of the proceedings and discussions of the symposium.
The following papers were presented in the symposium:
Aichinger, E. Können wir eine gemeinsame Platform für die verscheidenen Schulen in der Waldtypenklassifikationen finden?
Arnborg, T. Can we find a common platform for the different schools of forest type classifications?
Dansereau, P. A combined structural and floristic approach to the definition of forest ecosystems.
Daubenmire, R. Some major problems in vegetation classification
Ellenberg, H. Können wir eine gemeinsame Platform für die verscheidenen Schulen in der Waldtypenklassifikationen finden?
Hills, G.A. Comparison of forest ecosystems (vegetation and soil) in different climatic zones
Kalela, A. Classification of the vegetation, especially of the forest, with particular reference to regional problems
Krajina, V.J. Can we find a common platform for the different schools of forest type classifications?
Kühler, A.W. Mapping tropical forest vegetation
Linteau, A. Y. a-t-il. Un terrain d’entente possible entre les différentes écoles au sujet de la classification de types forestiers?
Medvecka-Kornaś, A. Some problems of forest climaxes in Poland
Ovington, J.D. The ecosystem concept as aid to forest classification
Puri, G.S. The concept of climax in forest botany as applied in India
Rowe, J.S. Can we find a common platform for the different schools of forest type classifications?
Scamoni, A. Können wir eine gemeinsame Grundlage für die verscheidenen Schulen in der Waldtypenklassifikationen finden?
Sukachev, V.N. The correlation between the concept ’forest ecosystem’ and ’forest biogeocoenise’ and their importance for the classification of forests
Webb, L.J. A new attempt to classify Australian rain forest
The article is a summary of a presentation by W. Wittich, held in the University of Helsinki in 26.4.1958.
The significance of fertility of the site in tree growh was known already for over 100 years ago in Germany, but after the First World War the view was abandoned in forestry. According to the Dauerwald system of managing forests that was introduced at the time, the type of site was considered relatively insignificant in forest management. Therefore, similar practices were used in all kinds of sites. The opposition against the use of this method resulted in new research on the site factors.
Knowledge of the relation of the site types and vegetation makes it possible to improve productivity: in regional planning the production that is considered to be necessary is assigned to the sites that have best conditions for it. For instance, in Niedersachsen county about 6% of the forest lands are reserved for cultivation of oak.
Another line of soil science studies the root causes behind the hands-on experiences of forest management. The aim is to abandon rigid approaches in forestry. Studying the effects of forest management practices on soil has been targeted, for instance, on effects of clear cutting on decomposition and vegetation, how the soil affects choice of tree species, and decomposition of litter from different tree species. Knowledge of soil and the trees’s demand of nutrients helps to mend disturbancies, such as nutrient deficiensies. Consequently, fertilization has become a new tool to improve productivity in forestry.
The article includes a German summary.
The aim of the study was to find out if it is possible to use Scots pine (Pinus sylvestris L.) seed from Central-Finnish origin in Northern Finland to supplement supply of local seeds. The principle has been to limit transfer of seeds to 200 km. According to this study, it seems possible to permit 300-400 km transfer of seeds at the same height above the sea level, not including the timber line area.
The author’s observations indicate that the trees originating from seeds of Central Finland at 20-35 years age withstand damage caused by snow and pine blister rust as well as the local provenience. However, the seedlings seem to be more susceptible to snow blight. Spraying of 2-3% sulphurated lime in the autumn before the arrival of snow proved to be most effective way to prevent the damage.
Southern proveniences have been found to grow faster than the local proveniences in Northern Finland. The stands of Tuomarniemi (Central Finland) and Rovaniemi (Northern Finland) provenances had no distinct difference in the summerwood percentage, and the volume weight of the Tuomarniemi provenience was higher than the weight of the provenience of Rovaniemi. The Tuomarniemi stand also gave largest yield, but the difference was probably due to partly at age difference of the sample trees. The naturally regenerated local provenance showed the greatest volume weight.
The article includes a summary in English.
There are about 155,000 ha of fen-like pine swamps (eutrophic pine bogs) in Finland, major part of which are situated in Northern Finland. In the classification system for drainability of peatlands, this type of peatlands had been placed in the first class. The study presents a new evaluation for the peatland type, based on vegetation and tree growth.
According to a previous study, the vegetation of fen-like pine swamps can be characterised by distinctive plant communities that seem to reflect the fertility and high pH of the underlying soil. In this study, the fen-like pine swamps were divided in two subtypes based on the vegetation: proper fen-like pine swamps and fen-like pine swamps with ericaceous shrubs. Both have distinctive vegetation, which is described in the article. The distribution of the subtypes seems to be different: fen-like pine swamps with ericaceous shrubs are more common in eastern parts of Northern Finland. The two subtypes could be divided in different drainability classes according to tree growth, proper fen-like pine swamps belonging to class 1 and fen-like pine swamps with ericaceous shrubs to class 4.
The article includes a summary in English.
The study is continuation of the earlier structure and growth studies of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) in Forest Research Institute. The material represents birch stands (Betula verrucosa, now B. pendula, and B. Pubescens L.) in Southern Finland. The stands were treated with different fellings, and in regard to their silvicultural condition classified as good, satisfactory and unsatisfactory. Height of the trees, height of living crown, volume, increment and volume increment and development of stem diameter series was measured.
The most characteristic difference between the silviculturally good and poor stands was that the the annual increment of the good stands concentrated into large size trees, and the increment of unsatisfactory stands into small and inferior trees.
It is concluded that if the aim of stand treatment is to produce large and high quality volume increment, the most favourable stand volume of birch stands, compared with naturally normal stand volume, seems to be 90-85% at the age of 41-55 years, and 80-70% at the age of 56-65 years. If growth of large size trees is aimed at, the maximum number of the dominant trees per hectares cannot be more than 400 at the age of 50-60 years.
The article includes a summary in English.
The Forest Research Institute of Finland has established permanent sample plots to survey the effect of thinnings on the stands. This study compares the development of tended and natural Scots pine (Pinus sylvestris L.) stands growing on three different forest types: Oxalis-Myrtillus, Vaccinium and Calluna site type. The effect of heavy thinning from below (Oxalis-Myrtillus and Vaccinium site types) and increment felling (Calluna site type) was assessed by dividing the trees of the stands in tree classification classes according to their crown storey and defects.
The results show that thinning from below and increment thinning increase the proportion of trees in the 1st crown storey, which is already large in the natural stands. Also the diameter distribution is more even and the mean diameter higher after the thinnings.
In Scots pine stands in natural state, volume increment per stem is highest in the 1st crown storey and diminishes strongly towards the lower crown storeys. Thinnings increased the increment. The study indicates that many of the objectives of the intermediate cuttings, including promoting the growth of the best trees and improving the quality of the stand, have in general been achieved. Consequently, the thinnings give means to achieve the most valuable yield in the stand.
The article includes a summary in English.
A vegetation survey was conducted in the Pisavaara national park in Northern Finland in 1946 and 1947. The national park (49,9 km2) includes southern half of the Pisavaara hills. The rock is quartzite. The most common vegetation type is dry upland forest type, but also fresh mineral soil sites are typical for the area.
The most common forest type, Empetrum-Myrtillus type coveres almost as much of the area as all the other forest types combined. The article describes in detail the vegetation of all forest types and gives a complete list of all plant species found in the survey. Total of 291 vascular plants was found, 242 of which were native to the area. In addition, 49 anthropochores had spread to the area when the forest ranger’s cottage was built. Number of species growing in the northern edge of their natural range is. Southern species can be found in the southern slopes of the hill.
The article includes an abstract in German.
Silva Fennica issue 52 includes presentations held in professional development courses, arranged for foresters working in public administration in 1938. The presentations focus on practical issues in forest management and administration, especially in regional level. The education was arranged by Forest Service.
This presentation describes growth and form of root systems of different tree species in different sites and how growth of roots affect forest management.
Silva Fennica issue 52 includes presentations held in professional development courses, arranged for foresters working in public administration in 1938. The presentations focus on practical issues in forest management and administration, especially in regional level. The education was arranged by Forest Service.
This presentation describes different methods of assessing tree growth.
Silva Fennica issue 46 includes presentations held in professional development courses, arranged for foresters working in public administration in 1937. The presentations focus on practical issues in forest management and administration, especially in regional level. The education was arranged by Forest Service.
This presentation describes forest regeneration on poor forest sites.
Examination of stands developed under natural conditions can be used to provide basis for comparison for study of the development and yield of stands treated with intermediate fellings. In Finland, the first investigation and the yield and the structure of natural normal stands were published in 1920. This investigation on development and yield of the natural forests of Kainuu in southeastern Northern Finland is based on 92 sample plots on three forest types; Empetrum-Vaccinium type (EVT), Empetrum-Calluna type (ECT) and Vaccinium-Myrtillus type (VMT).
The Scots pine (Pinus sylvestris L.) sample plots represented variation of age classes for construction of mean development series. The Norway spruce (Picea abies (L.) H. Karst.) of the region are so old that development series could be obtained only for dominant trees based on stem analysis.
The average development of Scots pine stand on EMT type within the region is on average more rapid and the yield in cubic volume quantitatively larger and structurally better than that on ECT type. Self-thinning during the early decades of EVT is slower. The pine stands are denser in the age of 70 in Kainuu compared to Central Northern Finland, but the development and yield are similar.
The development, yield and structure of natural Norway spruce stand on VMT proved considerably inferior to the average level of pine stands on EVT, and to a major part on ECT. The mixed pines on spruce sample plots have developed better than spruces of equal age. Spruce stands on VMT in the area developed markedly better than Geranium-Dryopteris-Myrtillus (GDMT) in Central Northern Finland.
It seems that a spruce stand seems to require more fertile site type in north than in the southern part of Finland. These fertile types are relative rare in the north. In the region, the best results are received with pine. As a rule, also the yield of birch (Betula sp.) is poor in the region.
The PDF includes a summary in English.
The Finnish forest industry is undergoing a vast expansion, which has raised questions of forest balance. This paper studies the possibilities to increase the amount available timber by means of forest drainage. About third of the Finnish land area is peatlands. The calculations of the investigation are based on Forestry Board districts. Based on earlier studies, there is estimated to be 3,042,000 ha of true drainable swamps, 973,000 ha of poor swamps, 1,381,000 ha of uplands in need of drainage, and 1,205,000 ha of drained peatlands. Therefore, the area of drainable and drained lands totals 6,6 million ha, and requirement of forest drainage 5,4 million ha. The drainage hardly reaches this extent, however. It can be assumed that part of the poor swamps is uneconomical to drain. In addition, a half of the paludified forest land will probably not be drained. Thus, it can be estimated that the area to be drained in the future is about 5 million ha. It seems possible that this area could be drained within about 50 years with the present draining capacity.
Draining of all objects of forests would increase the annual increment of our forests, in time, by about 10.5 million m3. This would signify an increase of 23% compared to the present growth of the forests. The increase in the growth consists mainly of softwood: 16% is birch, and the remaining 84% almost equally of Scots pine and Norway spruce. The increase of growth is relatively slow. Depending on the rate of the drainage program, the mean increase of growth will be reached in about 25–35 years. The increase in removal indicated by the increase in the mean increment will be reached in only 50–60 years.
The PDF includes a summary in English.
Snow cover and ground frost was studied in 29 forest stands in Southern and Central Finland in 1957–1959. The tree species influenced greatly accumulation of snow on the forest floor. Norway spruce (Picea abies (L.) Karst.) retains snow in its crown. In addition, snow and water falling from the branches compress the snow cover under the trees, and the ground freezes deeper because of the shallow snow cover. In the spring, the dense crown prevents rain and radiation reaching the ground, which remains cold longer. However, ground frost may protect spruce, which has a weak root system, from wind damages.
Scots pine (Pinus sylvestris L.) has similar, but milder, effects on snow cover within the forest. The crowns of pine seedlings and young trees pass snow easily, but later the crowns intercept it considerably. The lower branches are, however, high up and the snow is evenly spread on the ground. The deciduous trees intercept little snow and in the spring the snow smelts and the frozen soil thaws early. The snow conditions of deciduous forests are, however, changed by a spruce undergrowth.
It can be assumed that the unfavourable conditions in spruce forests can be alleviated by thinning. Also, mixture of pine and deciduous trees can transform the conditions more favourable in the spruce stands.
The PDF includes a summary in English.
In Southern Finland Scots pine (Pinus sylvestris L.) is mainly sown on Vaccinium and Myrtillus-type sites. The material for the study was collected by measuring sample plots in pure, even-aged pine stand that had been sown. The sample stands had been thinned from below.
The volume of the stands was roughly the same as that of repeatedly thinned pine stands. The cubic volume of sown pine stands is 65–90%, varying according to age, of that of natural-normal pine stands. The current annual volume increment of stands on Myrtillus-type was 8–9 m3/ha at age of 20–30 years. The peak was reached at age of 35 years with 9 m3/ha, in the following years the increment is about 8 m3/ha until the age of 60 years. On Vaccinium type sites increment reaches 6–7 m3 level at age of 30 years, and attains the peak of 7 m3/ha at the age of 45 years. Annual increment was in young and middle-aged Myrtillus-type stands about 10% greater, and on Vaccinium-type stands 15–20% greater than in natural-normal pine stands.
The total volume increment in 70 years old Myrtillus-type stands was 580 m3/ha over bark, and in 80 years old Vaccinium-type stands 520 m3/ha. The total removal on Myrtillus-type sites totalled nearly 350 m3/ha in sown pine stands up to 70 years of age, and 280 m3/ha on Vaccinium-type stands. The total yield in sawn timber per hectare rises up to 6,300 cubic ft in a 70 years old stand on Myrtillus-type stands, and 5,300 cubic ft in Vaccinium-type stands. In conclusion, the volume and increment development of managed pine stands established by sowing up to 70–80 years of age is largely the same as in repeatedly thinned pine stands, but the structure and yield offer greater advantages. The investigation demonstrates that, in the case of Scots pine, sowing is an advantageous method of regeneration. Sowing is an advantage especially in the cases where natural regeneration is uncertain and slow.
The PDF includes a summary in English.
The purpose of the investigation was to study the factors which determine the amount of the largest permanent allowable cut and to work out a method to estimate it. There is a need to have a ’short cut’ formula for rough preliminary estimates. The preliminary estimates will be checked by stock development forecasts. The largest allowable cut and its sustained basis are only guaranteed by a forecast through a period during which all the present tree stands have reached maturity and exploited.
Estimations of the largest permanent allowable cut are based on the data of the present and desirable growing stock. The present stock was a growing stock of Scots pine (Pinus sylvestris L.) dominated stands on Vaccinium type forests in Southern Finland. The connected Austrian formula is a simple way for preliminary estimation of the largest cut but its sustained basis must be checked by a stock development forecast.
In a stock development forecast the future increment and cut are calculated. For this purpose, the average site quality, tree species, age class and average volume in each class seem to be sufficient variables. The forecast is carried out within the limiting data of the present and desirable stock.
If there is an abundance of mature and over-mature stands, the largest permanent allowable cut is greater than the present increment, provided, however, that bulk of the cut is drawn by determined generation measures. Measured in solid cubic meters, the sustained cut from the Southern Finnish pine stock exceeds the present increment by 11%. With regard to the sustained saw timber production the cut can exceed the present increment by 5–7%.
The PDF includes a summary in English.
The purpose of this study was to clarify increment forecast methods in connection with the cutting budget. The emphasis is laid on the Finnish increment per cent methods. A tentative attempt is made to carry out a passage calculation. Increment forecasts are accomplished for diameter class distribution of a 60 years old Scots pine (Pinus sylvestris L.) stand. The increment data for the growing stock are taken from the domestic increment calculating tables.
When comparing the results of the two methods, the increment values are expressed in rabatt per cent in which the forecasted annual increment is in proportion to the initial value of the growing stock. It will be emphasized that the weak point in the domestic budgets is in the relation between the increment of the developable stock and the increment of the exploitable stock. Almost all the Finnish increment data are from the developable trees and the estimates of the increment of the exploitable trees have not been on sufficient facts.
The PDF includes a summary in English.
In this investigation was studied 1) Volume growth and yield of timber in managed Norway spruce (Picea abies (L.) Karst.) forests under different rotations. 2) Value growth, net forest income and soil expectation value of managed forests under different rotations, and 3) The rotations of spruce forests managed on different rotation principles. The data was collected from Oxalis-Myrtillus type forests in South-West Finland.
Two developmental series of stands were constructed for the research, one of which were of better sites than the other. Sample plots were pure, even-aged spruce stands in well-managed forests. The stands had been thinned from below. The age varied from 25-30 years to the age of final cutting.
According to the study, in the artificially regenerated spruce stands the highest mean annual volume growth, 9.7 m3/ha, and also the highest net annual income of 14,50 Finnish marks/ha (calculated from average stumpages) was reached in rotation of 70 years. In the other managed spruce forests a mean annual volume growth of 6.6-8.8 m3/ha and the net annual income of 10,500-14,500 Finnish marks/ha were reached in the rotation of 70-100 years. The rotation for the maximum mean annual volume growth varied in the different series between 67-92 years. The maximum mean annual forest rent was only achieved in series B in a rotation of about 100 years, and in a naturally normal stand in a rotation of about 120 years. The intensity of thinnings and silviculture had a greater effect on value growth and on net income than on volume growth.
The PDF includes a summary in English.
There are contrary opinions on the ability of Scots pine (Pinus sylvestris L.) seedlings to withstand oppression by hold-overs and recover after their felling. The recovery potential of oppressed pine stands in Southern and Northern Finland was studied using two kinds of material, fully recovered Scots pine stands and stands recently released. The volume and volume increment of the stand were measured, and the health of the sample trees was determined.
The study showed that those released pine stands that had been in oppressed state very long (25-60 years) had recovered after clear-cutting. After the release the stands grew at first slowly, but after recovery at about the same rate as natural normal stands of a similar height. The smaller, younger, and less stunted the seedlings were when they were released, and the better the site, the faster was the recovery. At the base of released pine stands various defects was detected. When the trees were released, the defects decrease their technical value. A heavy partial cutting had generally a disadvantageous effect on the stand. Recovering seedlings were found clearly to hinder the development of younger seedlings nearby. This inhibition seemed to be a result of the rapid spread of the root system of released pine trees.
The PDF includes a summary in English.
The purpose of the investigation was to study the amount, quality and distribution by layers of depth of horizontal roots in Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) stands in Southern Finland. The sample plots included stands on soil varying from sandy to stony, and stands of varying ages from seedling stands to an old stand, in Myrtillus and Vaccinium type forests.
In a Norway spruce stand, the amount of roots increases rapidly and reaches its maximum, about 450 meters/m3, at an age of 100-110 years. In a Scots pine stand the maximum, about 370 m/m3, is reached earlier, at an age of 60-70 years. The root system of pine expands more rapidly than that of spruce. The total length of the horizontal root system of pine amounts to 1,000 m soon after 40 years of growth, of spruce at the age of 60. Later the situation changes, and at the age of 110 the root systems of both species are about the same size, but older trees of spruce have more extensive root system.
Majority of horizontal roots are under 1 mm in diameter. Of the horizontal roots of spruce stands the majority lie in the humus layer and in the topmost mineral soil stratum. Over half of horizontal spruce roots are, thus, at a maximum depth of 5 cm, while majority of the roots of Scots pine lie at maximum in depth of 10 cm. At the same layer grow also the roots of the ground vegetation, which may affect the competition between the species.
The PDF includes a summary in English.
This special volume of Acta Forestalia Fennica is published in memory of professor A.K. Cajander (1879-1943), who was one of the founders of the Finnish Society of Forest Science. It contains a short biography, a complete list of his literary works and one of the papers on forest types he has written.
This PDF includes his article on forest types in Finnish. The translation of the text in English can be found in a separate PDF (article id 7396).
The idea of forest types was developed by professor Cajander first in 1904-1909, when he was working as a student in the Evo Forestry Institute. The first publication in 1909 was followed by intensive research and the findings of the investigations were published in 1929 in Acta Forestalia Fennica 29 (Metsätyyppiteoria, The theory of forest types).
When classifying forest growing sites, the purpose is to combine those having the same or approximately same yield capacity, and to separate into different classes those whose yield capacity is widely different. The article states that site quality classification is a necessity in organized forest management as it gives a basis for all forest calculations concerning with yield and profit. The principles of site classification and its meaning in forest management is discussed.
The aim of the study was to investigate effect of growth conditions on germination and growth of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) seedlings in greenhouse conditions. Germination of seeds becomes markedly slower as the soil temperature decreases. It seems that low temperatures affect more Norway spruce than Scots pine. When temperature rises, the fresh weight of the seedlings increases more in pine seedlings than in spruce seedlings. Accordingly, lower temperatures affect less the weight growth of spruce seedling than that of pine seedlings.
An experiment testing how root competition affect germination showed that adjacent seedlings decrease germination of seeds more than shading with branches. The effect was strongest on pine and spruce seedlings when the shading tree species was fast growing birch (Betula sp.). On the other hand, shading affected most height growth of birch seedlings. Growing space can vary in relatively large range without it affecting greatly tree growth.
The PDF includes a summary in German.
The development roots of Norway spruce (Picea abies (L.) H. Karst.) seedlings was studied in sample seedlings grown in different kinds of sites. In the early stage, the seedling roots grow primarily length. The main root is usually long. If the growth of the root is hindered, the tip of the root dies, and the root system growing from the original root collar remains relatively small; in these cases, the secondary root system becomes more important. In unfavourable conditions the root branches can early on replace the main root. The main root of a germling seems to be less able to seek for free growing space than the main and side roots of older seedlings. When the growth of the root is blocked by some kind of obstacle, it does not often hinder the growth of the seedling. The type of soil influences strongly how the root system grows. In good soil and in humus the root system is regular and richly branched, while in clay and coarse sand the root system was small. Spahgnum moss was good substrate for seedlings, Dicranum undulatum moss little less good, while the seedlings grew poorly on Pleurozium Schreberi.
The PDF includes a summary in German.
The height growth of Scots pine (Pinus sylvestris L.) seedlings were observed in Korkeakoski and Evo in Southern Finland in 1925-1928. The growth was slow in the beginning of the growing season, increased after that to decrease again towards the end of the growing season. The height growth begun in May, reached the fastest growth rates in June, and ended in June-July. According to the earlier studies, the length of the height growth of Scots pine is dependent on the temperature of the previous summer. This study showed that warm temperatures of the same summer promote height growth, and low temperatures slow it down. Also the daily growth fluctuates, being highest during the afternoon and slowest during the early morning. The daily growth is dependent on temperature.
Norway spruce (Picea abies (L.) H. Karst.) begin the height growth in average 9 days later than Scots pine. Compared to pine, the speed of growth in spruce decreases slower towards the late summer.
The volume 34 of Acta Forestalia Fennica is a jubileum publication of professor Aimo Kaarlo Cajander. The PDF includes a summary in German.
The root systems of 192 Scots pine (Pinus sylvestris L.) sample trees were dug out and measured in Säyneinen, Rautavaara and Pielijsäjvi in the Central Finland and Orivesi, Teisko and Hämeenkyrö in the Southern Finland. The volume of root system of Scots pine was always smaller than the stem, varying from 15% to 94% of the stem volume. The ratio is smaller in dense stands. The type of soil of the site affects how the central root system (tap root and the inner vertical roots) develop. This reflect the adaptability of the root system to different growth conditions. The root system may, for instance, substitute the tap root with stronger inner roots.
PDF includes a summary in English.
Discs were collected from sample trees of Scots pine (Pinus sylvestris L.) in different types of peatlands and mineral soil sites in Kajaani, Rovaniemi, Kuusamo; Suojärvi, Pielisjärvi, Evo and Lokalahti in Finland. The growth ring series of the different areas reach as far as in the 1600th century in some sample plots. The diameter growth shows patterns that repeat in cycles of 7, 11, 21, 35 and 70 years. However, the cycles are not exactly equally long. The average lengths of the cycles are relatively similar both in peatlands and in mineral soil sites.
The PDF includes a summary in German.
There is little knowledge about the value increment of the stands that are about to become mature for felling. Sample plots were measured in Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) stands in the most common forest site types in Rovaniemi, in northernmost Finland. Sample trees were chosen from dominant and codominant trees of the stand.
The value increments for the stands were generally very low. The average rotation of the studied stands would be 160 years. In the better forest site type, the increments of basal-area, volume and form height decrease slowly as the diameter of the tree increases. The value increment can give valuable information for intermediate fellings. They should be targeted mainly to large codominant trees and partly also in dominant trees that do not yet give logs, because their value increment is low.
The PDF includes a summary in German.
The forest sites have typically been classified by two principles, either as stand quality classes or as locality (site) classes. This article describes the principles of Finnish forest site types (forest quality classes) which are based on classification of localities according to their forest plant associations. All the stands that belong to the same forest site type are characterized by a distinct, more or less identical plant species composition. The forest site types are independent of the tree species. The forest site types in a larger area are relatively numerous, but can be grouped according to their normal form. The Finnish forests are separated to dry moss forest class, the moist moss-forest forest class and grass-herb forest class. The different forest site types belonging to the classes are described in detail. Growth of the trees is different for the different forest site types, but varies little within a same site type. The forest site types suit therefore well for the purposes of forest mensuration and for yield tables. The forest site types reflect also the properties of the soil.
Only about 24,000 hectares of peatlands have been drained in the state lands by the 1921. The aim of this study was to define how much the growth of the trees in the drained peatland revives. Sample plots were measured in previously drained peatlands that had sufficient Scots pine (Pinus sylvestris L.) tree stand. A stem analysis was performed to one of the sample trees. The evenness of the stands was dependent on how evenly the peatlands had dried when the stand was regenerated. Thus, the sample stands were not always fully stocked. However, they had capacity to develop towards evenly structured forests as the peatlands continued to dry further. The diameter and height growth of the dried peatlands have corresponded the similar stands in mineral soil sites. In trees that have grown stunted in the peatlands, the diameter growth seems to increase faster than the height growth. The volume growth is slightly smaller than in the similar mineral soil sites due to less favorable stem form. After the draining, the roots of the trees continued to grow from the old branches of root, but start then to form new roots. When the ground water level drops, the root layer grows deeper.
The PDF includes a summary in German.
The height and diameter growth measured from different Scots pine (Pinus sylvestris L.) stands in Southern Finland was compared with meteorological information. The height growth benefits from warm weather in late summer in the previous year, and especially from high temperatures in June. Precipitation or the temperature in the same year did not affect the height growth. Diameter growth benefits from high temperatures in the spring of the same year, especially in April. High precipitation in the spring has in some cases negative impact on the diameter growth. The different combinations of precipitation and temperature can have variable effects on tree growth. In the diameter growth was seen a periodicity that coincides with sunspots.
The first proper growth and yield tables were prepared in Finland already in 1872, but they have been used little as the needs of forestry and forest sciences increased. One of the problems of the old yield tables was how the site quality classes are determined. The new growth and yield tables use the forest site type classification, which enables the use of same site types for all tree species. This makes it possible to compare the growth of different tree species in same kind of sites. The tables also use stem frequency distribution series. In the first stage, the tables were prepared for Southern and Central Finland.
The PDF includes a summary in German.
New growth and yield tables were prepared for Southern Finland. To finalize the tables, it had to be determined whether the forest site types developed by Cajanus could be used in mensurational research.
Comparative study was performed in 1916-1919 to study the growth of the trees in different forest site types. Total of 467 sample sites were measured in Southern and Central Finland. All the forest site types were found to have a distinctive vegetation typical to the site. It can be concluded that the ground vegetation can be used to determine the forest site type. The growth of trees was different in different forest site types, yet similar within each site type. The forest site types are uniform, natural and easy to determine, and can thus be used to classify the forest stands and used in mensurational research and a basis to growth and yield tables.
The PDF includes a summary in German.
The forest site classification system used in Finland is based on ground vegetation rather than the wood production capacity. A. K. Cajander has presented a detailed classification of different forest site classes in different parts of the country. This study focuses on the forest site types of Northern Finland, which are less well defined. The article presents detailed vegetation analysis and lists of plant species in different forest site types in Northern Finland. In contrast to southern parts of Finland, both the natural Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst) stands are uneven-aged in the north. The forests are also relatively thin. There is a marked difference in height of trees between the richest and poorest sites, but the dominant trees of the same site type were of similar height both in the north and south part of the study area. The differences in the height of dominant trees seem to be smaller than in Southern Finland. Also, in windy areas prone to snow damage, climate conditions can affect tree growth more than the forest site type. In more sheltered areas forest site type determines forest growth.
The PDF includes a summary in German.
The article describes a method to prepare growth and yield tables for forests in Northern Finland, which differ markedly from forests in the southern part of the land. They are mostly uneven-aged, and there are little forests that belong to separate age-classes. The forests are predominantly old. The most common age-class in the old forest’s group is 150-160 years. Also, the lands are poorer than in Southern Finland. Because the variation of the poorer sites is larger than in better sites, the number of sample plots needed to prepare the growth and yield tables has to be larger than in Southern Finland, where the lands are better. The yield tables cannot be prepared for all the numerous forest site types of Northern Finland. The number of age-classes has to be relatively low. In consequence, the growth and yield tables will not be as accurate as those made for the better forest site types in Southern Finland.
The article presents a survey on distribution of fertile lands, soil types and site classes in Savo and Karelia in the central and eastern parts of Finland. The survey was based both in existing publications and statistics, a line survey, and visual observations during field trips. The site quality classification is based on the vegetation and occurrence of indicator plant species. The article lists distribution of indicator species in different forest site types on maps of the area. In addition, a review of history of land use and agriculture give indications of the location of the fertile lands in the area. A map of the forest site types in different parts of the area illustrate the data collected from the different sources.
The PDF includes a summary in German.
Tree growth is one of the factors that have been used to determine the site quality. The aim of the study was to show that growth of single trees growing on a same forest site class are similar, but differ from trees growing on a different site type. To compare the tree growth, a stem analysis was performed to dominant trees in Scots pine (Pinus sylvestris L.) stands, measured in 15 Myrtillus type sample plots and in 15 Calluna type sample plots in state forests in Salmi, situated in north side of Lake Ladoga. The height growth when the tree was young was higher in the trees growing in the Myrtillus type than in the Calluna type. Also, the trees of same age are higher in Myrtillus type stand than in the Calluna type. In Calluna type, the height growth, however, evens out later in age than in the Myrtillus type. The volume growth of the trees begins to increase earlier in Myrtillus type, and is higher than in Calluna type. Similarly, the diameter growth in breast height is higher in the Myrtillus type.
The PDF includes a summary in German.
The aims of the present study were to determine physical and physio-chemical properties of some Finnish forest tree nursery soils, and to examine relationships between these properties and the amount of organic matter in the soil.
The following soil tillage layer properties of 33 fields belonging to 8 forest tree nurseries were determined: soil particle size distribution, organic matter content, bulk density and density of solids, total pore space, soil water volume at potentials pF 2.0 and 4.2, available water content and air space at potential pF 2.0, active acidity, electrical conductivity index and cation exchange capacities at pH 4.5 and 8.0. The soil texture class of the tillage layer parent material was sand, only in a few cases did higher percentage of silt and clay indicate a morainic nature of parent material. The amount of organic material in the soils varied within wide limits, reflecting differences in amelioration policy between the single nurseries.
Relationships between the physical properties of the soil parent material and those related to fertility were in most cases strongly influenced by the amount of soil organic matter. Soil density values decreased as the organic matter content increased from 2 to 25%, giving rise to the increase in the total pore space. However, the amount of water held at potential pF 2.0 and the available water content did not increase with increasing organic matter content. This was due to the absence of the particle fraction in the sand. Nursery soil amelioration, involving in most cases a mixture of Sphagnum peat with sand, thus gives rise to an increase in the content of drainable water.
Cation exchange capacities were positively correlated with the organic matter content. However, the absolute number of exchange sites expressed as equivalents in the tillage layer did not increase in accordance with the increase in organic matter content due to the influence of the organic matter content upon the ratio of solids in the voids.
The PDF includes a summary in English.
The paper is the final report of a study on the estimation of value increment and inherent variables of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) stands. The main aim was to obtain improved criteria for decision-making concerning the priority of stands for regeneration.
The construction of various estimation models and their reliability are discussed in detail. The study, together with some previous papers, has resulted in a system which on the basis of a number of easily assessed stand variables gives for the stands concerned the volume of stems, percentages of timber assortments, stumpage value, volume increment and value increment.
The following examples are given with regard to the practical application of the results, in addition to the determination of the relative maturity of stands: 1) The study of various trends in stand development; the comparison between the volume and value variables. 2) The estimation of timber assortments needed for a cutting budget, trees marked for felling etc. 3) The calculation of the value of forests.
The PDF includes a summary in English.
The aim of this investigation was to examine the dependence of stand volume and increment on different growth factors on drained peatlands drained 20 years ago. Measurements were made in 1977-79 on 35 sample plots in Central Finland on relatively poor pine bogs with a thick peat layer.
It became evident that the stand volume, increment and radial growth and growth development are primarily functions of groundwater depth. Groundwater depth is dependent, in the first place, on ditch depth and ditch condition. With regard to the variation in ditch spacing (ca. 35-70 m) under examination, the effect of ditch spacing on the stand was insignificant. As a practical recommendation it was concluded that ditches should be kept deep enough (> 70 cm) in order to maintain undisturbed stand development.
The PDF includes a summary in English.
An attempt was made in this study to determine which nutrients and in what amounts should be used in the fertilization of Scots pine (Pinus sylvestris L.) seedling stands on nutrient-poor open bogs in order to obtain optimum seedling growth and to minimize the risk of elk damage.
The most important nutrient to improve seedling growth in the experiments was phosphorus. Already rather small amounts produced a significant effect although the effect of higher dosages seemed to be longer lasting. After fertilization also nitrogen gave significant increase in growth. The number of seedlings damaged by elk increased the most on N-fertilized plots. Also, phosphorus increased the occurrence of elk damage, but effect seemed to be related to the better growth and more suitable size of P-fertilized seedlings. The effect of potassium on seedling growth and on occurrence of elk damage was negligible.
The PDF includes a summary in English.
The paper concerns the estimation of the increment of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) stands in the southern half of Finland. For the methods based on stand tables, tree functions forecasting the annual increment of diameter and height during the next 5-year period are presented. The main results of the study, however, are the functions for the volume increment percentage of pine and spruce stands. The independent variables are: forest site type, tree species, stand age and volume, and mean diameter. The standard error of estimate is about 17% in the best functions. Calculations were made also with regard to the application of the results in growth estimation of large forest areas.
The PDF includes a summary in English.
The study deals with the development during the 1950s and 1960s of a stand growing on peatlands which had been drained in the 1930s. The following characters were determined by measurements: the volume of the growing stock, the volume increment, the relative increment, the increment percent and the increment curves. Moreover, the possible changes taking place in the difference between tree growth along the ditches and in the middle of the strip between ditches were studied. In addition, the regional variation in increment was studied; this question was studied as the regression between the relative growth and the temperature sum. The results were compared with other Finnish investigations into the regional variation of increment.
The volumes of the growing stock had increased during the course of twelve years by 70–10 m3 /ha depending on the site type and climatic zone concerned. The relative increment had dropped in each case studied. As a matter of fact, this is only to be expected because the volumes had increased and the absolute growth had remained more or less unchanged. The development of the increment percent was compared with mineral soil stands in the case of Southern Finland, both uncut stands and stands treated with cuttings. According to the results obtained, the development of the increment percent was better in the present material than in uncut forests, but in some cases it did not reach the level of tended stands. The revival of the tree crop after draining takes place at different rates in the vicinity of and, on the other hand, at greater distances from the ditches and that this relationship is dependent on the fertility of the site.
The PDF includes a summary in English.
This study is concerned with silvicultural selection from above. The material consists of 18 Scots pine (Pinus sylvestris L.) sample plots in the southern half of Finland in experimental forests. The method is motivated by the great difference between the stumpage prices of saw timber and pulpwood. The method suggested includes the removal of individuals belonging to the predominating canopy, to achieve high levels of income from the stand at an early stage. The method is applied at when the growing stock is attaining saw-timber size. Before that the stand is treated with thinnings from below. It is supposed that the volume of growing stock is maintained at a level as high as that in below-thinned stands, and that rotation is of normal length.
On the average, the increment in basal area, as well as volume increment, is greater in stands selectively cut from above than in those treated with low thinnings of the same degree. Initially, selection from above seems to exert a negative effect upon the development of dominant height; later, the dominant height reassumes the same rate of increment as in the below-thinned stands. Selection from above also means an increase in saw-timber production, although it involves a reduction in the mean size of saw timber. The investigation includes growth and yield tables for pine stands treated with silvicultural selection from above.
The results of the investigation prove that silvicultural selection from above is at least as profitable as low thinning. This provides freedom for stand treatment, and contributes to the application of a method most suitable for the owner in each individual case. It is further stressed that the maintenance of a high wood capital in the stand is far more important than the method of thinning applied.
The PDF includes a summary in English.
The present study is an attempt to establish the response to drainage of Norway spruce (Picea abies (L.) H. Karst.) and Scots pine (Pinus sylvestris L.) on some peatland sites, and to determine the revival of the trees and continuance of the growth after drainage. Growth of trees in four types of peatland types of drained peatlands drained between 1908-1918 were studied, and the results were compared with corresponding mineral soil sites
In pine the response to drainage was faster than in spruce in all age classes. Even the oldest groups of trees showed as good growth as trees of the same size growing on mineral soils. The rapidity of revival and the radial growth maximum are affected by the age of the tree at the time of ditching and the site fertility. The size of the trees, too, is of importance for the magnitude of post-drainage radial growth; the influence is similar in different sites. The basal area growth of trees growing on peat usually showed an unbroken increase during the entire post-drainage period. Neither the height growth indicates a decline in growth over time.
In the light of the results from sample tree analysis, it seems that tree growth gradually rises even after the revival period in peatlands originally covered by forest. The are some errors in the comparisons made, but it can be observed that aging of drainage areas as such does not mean that growth conditions become poorer.
The PDF includes a summary in English.