Current issue: 58(5)

Under compilation: 59(1)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'growing season'

Category : Article

article id 5178, category Article
Reijo Solantie. (1983). "Mereisyyden - mantereisuuden" ja "humidisuuden" käsitteistä erityisesti tammen luontaisen levinneisyyden perusteella. Silva Fennica vol. 17 no. 1 article id 5178. https://doi.org/10.14214/sf.a15093
English title: Concepts of continentality-oceanity and humidity especially in the light of the natural distribution of Quercus robur.
Original keywords: tammi; levinneisyys; ilmasto; mereisyys; mantereisuus; levinneisyysalue; kasvukauden pituus; lämpösumma; ilmankosteus
English keywords: growing season; climate; distribution; Quercus robur; oak; northern boundary; oceanity; continentality; northern distribution limit; humidity
Abstract | View details | Full text in PDF | Author Info

Climatological factors determining the natural northern boundary in Europe of oak (Quercus robur L.) were investigated. The natural northern boundary of oak corresponds in detail to the curve at which the growing season, beginning at +5°C in spring and ending at +10°C in autumn, is of a certain constant length. The northern boundaries for more oceanic plants can be explained by prolonged autumn activity. This is obviously the general explanation or the concept of oceanity. Oak spread markedly in Finland in the summers during 1961–1975, which on an average were as warm but much dried than those during 1931–1960. The importance of humidity for oak was discussed.

The PDF includes a summary in English.

  • Solantie, E-mail: rs@mm.unknown (email)

Category : Article

article id 7231, category Article
Martti Hertz. (1929). Huomioita männyn ja kuusen pituuskehityksen "vuotuisesta" ja vuorokautisesta jaksosta. Acta Forestalia Fennica vol. 34 no. 18 article id 7231. https://doi.org/10.14214/aff.7231
English title: Observations on annual and daily cycles in the height growth of Scots pine and Norway spruce.
Original keywords: kuusi; mänty; taimet; lämpötila; pituuskasvu; kasvukausi; vuotuinen vaihtelu
English keywords: Pinus sylvestris; Picea abies; height growth; temperature; seedlings; growing seasons
Abstract | View details | Full text in PDF | Author Info

The height growth of Scots pine (Pinus sylvestris L.) seedlings were observed in Korkeakoski and Evo in Southern Finland in 1925-1928. The growth was slow in the beginning of the growing season, increased after that to decrease again towards the end of the growing season. The height growth begun in May, reached the fastest growth rates in June, and ended in June-July. According to the earlier studies, the length of the height growth of Scots pine is dependent on the temperature of the previous summer. This study showed that warm temperatures of the same summer promote height growth, and low temperatures slow it down. Also the daily growth fluctuates, being highest during the afternoon and slowest during the early morning. The daily growth is dependent on temperature.

Norway spruce (Picea abies (L.) H. Karst.) begin the height growth in average 9 days later than Scots pine. Compared to pine, the speed of growth in spruce decreases slower towards the late summer.

The volume 34 of Acta Forestalia Fennica is a jubileum publication of professor Aimo Kaarlo Cajander. The PDF includes a summary in German.

  • Hertz, E-mail: mh@mm.unknown (email)

Category : Research article

article id 10449, category Research article
Emanuel Strieder, Sonja Vospernik. (2021). Intra-annual diameter growth variation of six common European tree species in pure and mixed stands. Silva Fennica vol. 55 no. 4 article id 10449. https://doi.org/10.14214/sf.10449
Keywords: growing season; climate effects; dendrometer; logistic model; mixing effect; seasonal growth; social tree position
Highlights: 244 intra-annual growth patterns of six tree species on five sites in mixed and corresponding pure stands were analyzed; Humid sites showed a longer growing season than dry sites; Deciduous species showed an earlier growth culmination than conifer species; Mixture effects were both positive and negative and clearly differed between years, indicating that climate alters mixture effects.
Abstract | Full text in HTML | Full text in PDF | Author Info

Studies of intra-annual growth are particularly useful for understanding tree growth because of their high temporal resolution. This study was performed in Austria and included hourly band dendrometer data of 244 annual tree recordings from six tree species (Picea abies (L.) Karst., Pinus sylvestris L., Larix decidua Mill., Abies alba Mill., Fagus sylvatica L., Quercus spp. (Quercus petraea (Matt.) Liebl., Quercus robur L.) sampled on five sites with contrasting site conditions in pure and mixed stands and on trees of different social position. Measurements encompassed 1–7 years. Cumulative diameter increment was modelled by logistic mixed-effects models with random effects at the tree and year level. The results showed large differences in seasonal growth patterns between sites, with a clearly shorter growing season at the drier sites. Species specific response on dry sites could be linked to drought characteristics, whereas response on more humid sites was related to light requirements or successional status. The deciduous trees showed earlier growth culmination and shorter growing periods than the evergreen species. Individual tree growth of Quercus spp., P. abies, and F. sylvatica was positively affected by mixture whereas L. decidua, P. sylvestris and A. alba showed no or adverse mixture effects. Mixture effects differed between years and social position. Furthermore, increment culmination was earlier in mixed stands, but shifts were minor. Tree growth differed by social position with dominant trees showing the largest increment and the longest growth duration, with shifts in tree growth patterns due to social position being as large as those between different sites.

  • Strieder, Boku, University of Natural Resources and Life Sciences Vienna, Department of Forest- and Soil Sciences, Institute of Forest Growth, Peter-Jordan-Str. 82, A-1190 Vienna, Austria ORCID https://orcid.org/0000-0001-6398-8536 E-mail: emanuel.strieder@students.boku.ac.at
  • Vospernik, Boku, University of Natural Resources and Life Sciences Vienna, Department of Forest- and Soil Sciences, Institute of Forest Growth, Peter-Jordan-Str. 82, A-1190 Vienna, Austria ORCID http://orcid.org/0000-0002-4201-6444 E-mail: sonja.vospernik@boku.ac.at (email)
article id 175, category Research article
Heikki Hänninen, Jaana Luoranen, Risto Rikala, Heikki Smolander. (2009). Late termination of freezer storage increases the risk of autumn frost damage to Norway spruce seedlings. Silva Fennica vol. 43 no. 5 article id 175. https://doi.org/10.14214/sf.175
Keywords: Norway spruce; simulation; autumn frost damage; day degrees; freezer storage; growing season
Abstract | View details | Full text in PDF | Author Info
Over the last few years it has become increasingly common in artificial forest regeneration to extend the planting period by using freezer-stored seedlings for early summer plantings. Developmentally, however, planted freezer-stored seedlings lag behind seedlings planted earlier in the spring. As freezer-stored seedlings also start hardening later, they are more susceptible to early autumn frosts, especially in years when the thermal growing season ends and the first autumn frosts come earlier than usual. By means of computer simulations with a simple temperature sum model and long-term air-temperature data from three locations in Finland, we examined the effect of the freezer-storage termination date on the risk of autumn frost damage to the seedlings. The long-term simulations revealed a drastic effect of year-to-year variation in the thermal conditions during the growing season on the occurrence of autumn frost damage. Such results provide crucial information complementary to those obtained in field experiments, which are always restricted to a relatively short time period. Together with earlier field data, the present results suggest that at an average regeneration site in central Finland, the planting of seedlings whose storage has terminated on 15 June and 22 June involve autumn frost damage every tenth and every fifth year, respectively. The sensitivity analysis revealed that the temperature sum requirement of maturation has a great effect on the risk of autumn frost damage, thus pinpointing the need for experimental studies addressing this ecophysiological trait of the seedlings.
  • Hänninen, Plant Ecophysiology and Climate Change Group (PECC), Department of Biological and Environmental Sciences, Box 65, FI-00014 University of Helsinki, Finland E-mail: heikki.hanninen@helsinki.fi (email)
  • Luoranen, Finnish Forest Research Institute, Suonenjoki Research Unit, Juntintie 154, FI-77600 Suonenjoki, Finland E-mail: jl@nn.fi
  • Rikala, Finnish Forest Research Institute, Suonenjoki Research Unit, Juntintie 154, FI-77600 Suonenjoki, Finland E-mail: rr@nn.fi
  • Smolander, Finnish Forest Research Institute, Suonenjoki Research Unit, Juntintie 154, FI-77600 Suonenjoki, Finland E-mail: hs@nn.fi

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles