The influence of different fertilization treatments and ditch spacings on the height growth of young Scots pine (Pinus sylvestris L.) seedling stands growing under various climatic regimes were determined. Comparisons were made between naturally regenerated and planted seedling stands. The effective temperature sum had a stronger effect on the height growth of planted seedlings, and in Northern Finland the planted seedlings seemed to be influenced to a greater degree by the adverse climatic conditions. The heavier the dose of fertilizer that had been applied, the greater the difference in growth caused by macroclimate. A considerably larger proportion of natural seedlings were located on hummocks compared with that of planted seedlings, irrespective of the region. On plots with wider ditch spacings, seedlings growing on hummocks were superior in height growth to those on flat surfaces.
The PDF includes an abstract in Finnish.
The effects of variations in the intensity of drainage and NPK fertilization on the natural regeneration and planting results and the subsequent development of seedling stands under various climatic conditions on drained nutrient poor pine bogs was investigated in a 16-year-old study.
Comparison of height development of Scots pine (Pinus sylvestris L.) stands on drained peatlands to that of pine stands growing in mineral soil sites show that in Southern Finland the most efficient forest improvement measures (10 m ditch spacing and 1,000 kg/ha NPK-fertilization) resulted in growth that corresponds a to a height index of a stand in a Vaccinium type site. Less efficient treatment (30 m ditch spacing and no fertilizer) resulted in growth corresponding the development of young stand in a Calluna type site. In Northern Finland the effect of fertilization on height growth was almost negligible. This is possibly due to a decrease in the nitrogen mobilization from south to north of Finland. Thus, it seems evident that fertilization of young Scots pine stands on nutrient poor drained peatlands can be recommended only in the southern part of the country.
The effect of ditch spacing is same in the whole country. The narrower the spacing the better the height growth. In the south planted stands thrive better than naturally regenerated stands, but the situation is reversed in the north.
The PDF includes a summary in English.
The paper describes the results obtained from an investigation into the effect of ditch spacing, ditch depth and furrowing on ground water table and on development of a Scots pine (Pinus sylvestris L.) plantation on open small-sedge bog in Central Finland (60° 50’ N; 24° 20’ E), drained in 1967. The area was planted in 1968 with 2+1 Scots pine transplants, and fertilized with Y fertilizer for peat soils. The seedlings were measured in 1972.
The depth of the ground water table was greater, the narrower the ditch spacing. The water furrows shortened the duration of the high ground water and lowered the ground water table particularly in the case of ineffective drainage. The narrower the ditch spacing within the blocks, the higher were the young trees. On the other hand, the differences in the height of the trees between the ditch spacings were eliminated by the effect of the furrows.
The PDF includes a summary in English.
The aim of this investigation was to examine the dependence of stand volume and increment on different growth factors on drained peatlands drained 20 years ago. Measurements were made in 1977-79 on 35 sample plots in Central Finland on relatively poor pine bogs with a thick peat layer.
It became evident that the stand volume, increment and radial growth and growth development are primarily functions of groundwater depth. Groundwater depth is dependent, in the first place, on ditch depth and ditch condition. With regard to the variation in ditch spacing (ca. 35-70 m) under examination, the effect of ditch spacing on the stand was insignificant. As a practical recommendation it was concluded that ditches should be kept deep enough (> 70 cm) in order to maintain undisturbed stand development.
The PDF includes a summary in English.
The paper presents some preliminary results of a 10-year-old study the purpose of which is to determine the effect of simultaneous variations in the intensity of drainage and fertilization on the development of planted and natural seedlings on peatlands under various climatic conditions. The development of the Scots pine (Pinus sylvestris L.) seedlings appeared to be better the more intensive the degree of drainage and fertilization used. The increase in the temperature sum had a positive effect on the development of pine seedlings and decreased the mortality rate.
The best growth result was obtained with a 10 m ditch spacing and strong fertilization. As it is difficult to decrease the 10 m ditch spacing for cost reasons, it can be concluded that on such oligotrophic peatlands as were used in this experiment, only an average growth level in the seedling stands can be reached even with the most efficient forest improvement measures. Broadcast fertilization used in the experiment, at least in large doses, increases seedling mortality, as well as the coverage of the ground vegetation, particularly that of cottongrass and fireweed, and also the shrub height, thus increasing competition. It cannot be recommended for afforestation, and today spot fertilization is used. According to this experiment natural seedlings seem once they have recovered after the first years, to grow better than the planted seedlings. This was true especially in the north and in areas, where drainage was not efficient. The height and height growth of the seedlings were to a large extent dependent on the temperature sum.
The PDF includes a summary in English.
The paper is based on data collected from 411 sample plots in various parts of Finland situated on peatlands which had been drained in the 1930's. The purpose of the study was to determine the influence of ditch spacing on the volume, increment and structure of timber crops growing on drained peatlands. The ditches had been spaced 70–90 m apart, and the sample plots were placed strip wise along the ditches.
The results of the study indicate that the influence of ditch spacing on both the total volume and the volume increment is greater, the poorer the site. On the other hand, the influence of ditch spacing on the structure of the stand as described by means of the mean diameter as weighted by the basal area, seems to be of similar magnitude in all the sites covered by the study.
Generally speaking, the influence of ditch spacing on stand development is surprisingly small, even in extreme cases. The total volume and the increment of the growing stock decrease by about 20% when the ditch spacing increases from 20 to 60 m, the corresponding decrease in the mean diameter having a magnitude of 10%. This was interpreted to be due to the fact that the main part of the superior growth along the margin of the ditch is spent in compensating for the space lost in the area taken up by the ditches.
On the basis of the results obtained it was concluded that the best solution in forest drainage from the economic viewpoint is to employ relatively wide ditch spacings, which leads to a rate of stand development somewhat below the potential.
The PDF includes a summary in Finnish.