While the most common type of mycorrhizae is endomycorrhizae, ectomycorrhizae dominate in the case of coniferous trees. Pine, in particular, has a strong association with mycorrhizae. Mycorrhizae enable trees to take up water and nutrients much more efficiently than the roots themselves. The fungus, in return, obtain carbohydrates and is able to grow and fruit. Mycorrhizal fungi are probably numbered in their thousands but so far few are known. Knowledge about their physiology, in particular, is lacking and studies dealing with their isolation and inoculation, which may be commercially valuable, remain unpublished. A new challenge for mycorrhiza research is the effects of air pollution. Forest suffering from extensive air pollution have few mycorrhizal fungi., infection is weak and the number of root deformations is high. As good mycorrhizae are important to tree health, there is a particular need to intensify mycorrhiza research.
The PDF includes an abstract in English.
Needle damages, transpiration, photosynthesis and needle and stem height growth of Scots pine (Pinus sylvestris L.) seedlings treated with dilute sulphuric acid were studied. The acidity of the solution was pH 3. Application of a dilute solution of sulphuric acid equivalent to the normal amount of precipitation occurring during the growing season damaged the surface of two-year-old needles but not that of the current-year needles. A reduction in the photosynthetic rate of 10–30% was observed compared with the untreated seedlings. Transpiration of the seedlings was not affected by the treatment. Needle growth and stem height growth of the seedlings growing on a substrate representing poor sandy soil were reduced. Increased needle growth and stem height growth were characteristic for the seedlings growing on substrate representing fertile moraine.
The PDF includes a summary in English.