The publication comprises proceedings of a conference held in Helsinki in 1981. Forest tree populations are investigated for population genetic structure, mating systems, mechanisms of genetic adaptation and ecological adaptation. Methods and techniques used in population genetic research of forest trees are presented. Much concern is given to applications by means of forest tree breeding, particularly the seed orchard breeding technique. Generally, the application of population genetics in cultivated forests is discussed.
The PDF includes a preface and the presentations of the conference (25 short papers) in English, and a comprehensive summary of the themes of the conference in Finnish.
In order to be recorded in the national list of untested seed orchards, set by law, a seed orchard must attain certain objectives. It is impossible to define universal requirements for all categories of seed orchards of all species. The present paper suggests minimum requirements for a clonal region seed orchards of Pinus sylvestris L in Finland. The clonal composition as well as factors influencing on the mating pattern have been given precise numerical threshold values. To be approved the seed orchard must fulfil all the requirements at the same time. The goal is to control the genetic superiority of the forest reproductive material obtained from registered untested seed orchards.
The PDF includes a summary in English.
Male and female flowering, cone crop, and some vegetative characteristics were studied in grafts 10 to 16 years of age in a clonal seed orchard of Scots pine (Pinus sylvestris L.). Genetic variation was found between clones in flowering as well as in cone production. Clone evaluation resulted in similar classifications of clones in different years. A regression analysis showed that crown size clearly increased but previous height growth slightly decreased flowering and cone production. The percentage of pollinated female strobili did not differ between clones.
The PDF includes a summary in English.
The study material included 600 Scots pine (Pinus sylvestris L.) grafts from the Tohmajärvi seed orchard in Eastern Finland. Their broad sense heritability for the height growth was 0.92, for the number of branches 0.87 and for the angle of branching 0.84. Grafts from Central Finland had cones more often than the southern ones, the frequencies being 26.3% and 11.2%. It seems that dominance plays a significant role in the genetical variation of this seed orchard and that height growth is probably more rewarding breeding characteristic than quality, the difference being small, however.
The PDF includes a summary in English.
An attempt was made to estimate critically the genetic gain in clonal seed orchards of Scots pine (Pinus sylvestris L.) in Finland. The selection differential of Scots pine and Norway spruce (Picea abies (L.) H. Karst.) is calculated on the basis of filed information on selected plus trees which has been kept by the genetic register at the Finnish Forest Research Institute. The differentials were computed as realized differences in height between plus-trees and normal stand characteristics on respectively site class and as a function of age.
The genetic gain in height growth of Pinus sylvestris was computed on the basis of information on selection differential and heritability. This genetic gain is between 2.6–4.4% provided there is no pollen contamination from unknown sources outside the seed orchard. The genetic gain of volume growth in Scots pine is about 7–15%, provided there is no pollen contamination in the seed orchard. However, according to investigations, there is invariably some pollen contamination in this kind of seed orchards. The contamination decreases to about 30–50% as the orchard matures and starts to produce endemic pollen. If the pollination would be entirely due to foreign pollen sources, the mathematically calculated genetic gain would be 3.5–7.5%.
The PDF includes a summary in English.