Current issue: 58(4)

Under compilation: 58(5)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Tomi Kaakkurivaara

Category : Research article

article id 10580, category Research article
Tomi Kaakkurivaara, Nopparat Kaakkurivaara. (2021). Cost-efficiency and ergonomic study of two methods for planting Eucalyptus spp. seedlings in plantation forestry. Silva Fennica vol. 55 no. 4 article id 10580. https://doi.org/10.14214/sf.10580
Keywords: productivity; time study; planting stick; planting tube; REBA; work load; work sampling
Highlights: We present a first assessment of the planting stick method as used in Thailand for planting Eucalyptus spp. seedlings in plantations in terms of time, cost and ergonomic parameters; Parallel analysis shows that the planting tube method may be superior for planting Eucalyptus spp. seedlings
Abstract | Full text in HTML | Full text in PDF | Author Info

In Thailand and various other countries tree seedlings are generally planted using simple manual tools, often a ‘planting stick’, but the method requires time-consuming, labour-intensive teamwork. However, use of a ‘planting tube’ allows a single person to perform both the preparation and planting work. Thus, in a classical time study and ergonomic survey we compared the productivity, cost-effectiveness, and ergonomic impact of planting Eucalyptus spp. seedlings using the two tools at the same planting site in Western Thailand. The planting tube method proved to be more productive, more cost-efficient, and less burdensome than the planting stick method (with time and cost requirements of 21 s and €0.0061 per seedling, versus 16.6 s and €0.0463 per seedling, respectively). In conclusion, the planting tube method may be a viable alternative to reduce costs and increase productivity, while maintaining reasonable workloads for the workers, despite the higher purchase price of planting tubes.

  • Kaakkurivaara, Department of Forest Engineering, Faculty of Forestry, Kasetsart University, 50 Phahonyothin Rd, Lat Yao, Chatuchak, Bangkok 10900, Thailand E-mail: tomi.kaakkurivaara@gmail.com (email)
  • Kaakkurivaara, Department of Forest Engineering, Faculty of Forestry, Kasetsart University, 50 Phahonyothin Rd, Lat Yao, Chatuchak, Bangkok 10900, Thailand E-mail: ffornrm@ku.ac.th
article id 10088, category Research article
Antti-Jussi Lindroos, Kira Ryhti, Tomi Kaakkurivaara, Jori Uusitalo, Heljä-Sisko Helmisaari. (2019). Leaching of heavy metals and barium from forest roads reinforced with fly ash. Silva Fennica vol. 53 no. 2 article id 10088. https://doi.org/10.14214/sf.10088
Keywords: recycling; lysimeter; fly ash; forest road rehabilitation; environmental impact assessment; low-volume road
Highlights: Heavy metal concentrations were generally low in percolation and ditch water samples of ash roads, but elevated concentrations were found in some parts of ash roads; Risk for heavy metal leaching is negligible if road parts producing high concentrations are rare.
Abstract | Full text in HTML | Full text in PDF | Author Info

The aim of this study was to determine the effect of leaching of heavy metals (Cr, As, Cd, Cu, Ni, Pb, Zn, Co, Mo) and earth-alkaline metal, barium (Ba), on the percolation and ditch water quality from the forest roads that contained ash in the road structures. Water quality was studied in the immediate vicinity below the ash layers as well as deeper in the road structure. Water quality was also determined in the drainage water in ditches that crossed the forest roads. A mixture of wood and peat based fly ash was used in the road structures. The treatments were: 1) no ash, 2) a 15 cm layer of ash/gravel mixture, 3) a 20 cm layer of ash/gravel mixture, 4) a 25 cm layer of ash, and 5) a 50 cm layer of ash. Large variation in the concentrations of Cr, As, Cu, Ni, Pb, Mo and Ba in the percolation water, even within the same treatment, caused difficulties to generalize the results. The concentrations of Cr, As, Ni, Pb, Mo and Ba in water samples were high in some treatment plot lysimeters containing ash compared to the control (no ash). On the other hand, many lysimeters had low and similar concentrations in water samples in the treatment plots containing ash compared to concentrations in the control plots. The ash in the roads did not affect the concentrations in the ditches. The leaching is uneven and seems to take place only from some parts of the ash layer. Risk for leaching is minimal if such parts are not widely spread.

  • Lindroos, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland E-mail: antti.lindroos@luke.fi (email)
  • Ryhti, University of Helsinki, Department of Forest Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland E-mail: kira.ryhti@helsinki.fi
  • Kaakkurivaara, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland E-mail: tomi.kaakkurivaara@gmail.com
  • Uusitalo, Natural Resources Institute Finland (Luke), Korkeakoulunkatu 7, FI-33720 Tampere, Finland E-mail: jori.uusitalo@luke.fi
  • Helmisaari, University of Helsinki, Department of Forest Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland E-mail: helja-sisko.helmisaari@helsinki.fi
article id 1239, category Research article
Tomi Kaakkurivaara, Nuutti Vuorimies, Pauli Kolisoja, Jori Uusitalo. (2015). Applicability of portable tools in assessing the bearing capacity of forest roads. Silva Fennica vol. 49 no. 2 article id 1239. https://doi.org/10.14214/sf.1239
Keywords: stiffness; light weight deflectometer; dynamic cone penetrometer; falling weight deflectometer; elastic modulus
Highlights: The dynamic cone penetrometer (DCP) and light falling weight deflectometer (LFWD) are useful tools for measuring bearing capacity; The measurement results are not same as with the falling weight deflectometer (FWD), but comparable.
Abstract | Full text in HTML | Full text in PDF | Author Info
Forest roads provide access to logging sites and enable transportation of timber from forest to mills. Efficient forest management and forest industry are impossible without a proper forest road network. The bearing capacity of forest roads varies significantly by weather conditions and seasons since they are generally made of poor materials and the constructed layers may be mixed with subgrade. A bearing capacity assessment is valuable information when trafficability is uncertain and rutting is obvious. In this study, bearing capacity measurements were carried out using the light falling weight deflectometer (LFWD), the dynamic cone penetrometer (DCP) and the conventional falling weight deflectometer (FWD). The aim was to compare their measurement results in relation to road characteristics and moisture conditions. Data were collected from 35 test road sections in four consecutive springs and during one summer. The test road sections had measurement points both on the wheel path and the centre line. The data show logical correlations between measured quantities, and the study presents reliable regression models between measuring devices. The results indicate that light portable tools, the DCP and the LFWD, can in most cases be used instead of the expensive falling weight deflectometer on forest roads.
  • Kaakkurivaara, Natural Resources Institute Finland, Green technology, Kaironiementie 15, FI-39700 Parkano, Finland E-mail: tomi.kaakkurivaara@gmail.com (email)
  • Vuorimies, Tampere University of Technology, P.O.Box 600, FI-33101 Tampere, Finland E-mail: nuutti.vuorimies@tut.fi
  • Kolisoja, Tampere University of Technology, P.O.Box 600, FI-33101 Tampere, Finland E-mail: pauli.kolisoja@tut.fi
  • Uusitalo, Natural Resources Institute Finland, Green technology, Kaironiementie 15, FI-39700 Parkano, Finland E-mail: jori.uusitalo@luke.fi

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles