Current issue: 58(5)

Under compilation: 59(1)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Petra Lasch

Category : Research article

article id 243, category Research article
Rupert Seidl, Werner Rammer, Petra Lasch, Franz-Werner Badeck, Manfred J. Lexer. (2008). Does conversion of even-aged, secondary coniferous forests affect carbon sequestration? A simulation study under changing environmental conditions. Silva Fennica vol. 42 no. 3 article id 243. https://doi.org/10.14214/sf.243
Keywords: forest management; Norway spruce; climate change mitigation; PICUS; 4C; model comparison
Abstract | View details | Full text in PDF | Author Info
To circumvent problems associated with even-aged, pure coniferous stands propagated outside their natural range alternative management strategies and conversion programs are currently discussed in Central Europe. However, a mainstreaming of such adapted silvicultural systems with climate change mitigation objectives is missing to date. In this study the objective was to assess in situ C storage under conditions of climate change in a secondary Norway spruce (Picea abies (L.) Karst.) forest management unit in Austria. Four management strategies (Norway spruce age class forestry, transition to continuous cover forestry with Norway spruce, conversion to mixed conifer/broadleaved stands, no management) were investigated under current climate and two transient climate change scenarios in a simulation study. By comparing the results of two independent forest ecosystem models (PICUS v1.41, 4C) applied under identical forcings and boundary conditions we aimed at addressing uncertainties in model-based projections. A transition to continuous cover forestry increased C storage in all climate scenarios (+45.4 tC·ha–1 to +74.0 tC·ha–1 over the 100 year analysis period) compared to the approximately balanced C budget under the age class system. For the mixed conifer/broadleaved management variant predictions of the two models diverged significantly (+29.4 tC·ha–1 and –10.6 tC·ha–1 in PICUS and 4C respectively, current climate). With regard to climate change impacts both models agreed on distinct effects on productivity but lower sensitivity of C stocks due to compensation from respiration and adaptive harvest levels. In conclusion, considering the potential effects of silvicultural decisions on C stocks climate change mitigation should be addressed explicitly in programs advocating targeted change in management paradigms.
  • Seidl, Institute of Silviculture, BOKU, Vienna, Austria E-mail: rupert.seidl@boku.ac.at (email)
  • Rammer, Institute of Silviculture, BOKU, Vienna, Austria E-mail: wr@nn.at
  • Lasch, Potsdam Institute for Climate Impact Research e.V., Potsdam, Germany E-mail: pl@nn.de
  • Badeck, Potsdam Institute for Climate Impact Research e.V., Potsdam, Germany E-mail: fwb@nn.de
  • Lexer, Institute of Silviculture, BOKU, Vienna, Austria E-mail: mjl@nn.at
article id 634, category Research article
Marcus Lindner, Petra Lasch, Markus Erhard. (2000). Alternative forest management strategies under climatic change – prospects for gap model applications in risk analyses. Silva Fennica vol. 34 no. 2 article id 634. https://doi.org/10.14214/sf.634
Keywords: climate change; forest management; adaptation and mitigation strategies; forest succession model; FORSKA
Abstract | View details | Full text in PDF | Author Info
The projected global climate change will influence growth and productivity of natural and managed forests. Since the characteristics of the future regional climate are still uncertain and the response of our forests to changes in the atmospheric and climatic conditions may be both positive or negative, decision making in managed forests should consider the new risks and uncertainties arising from climatic change, especially if the rotation periods are long. An extended version of the forest gap model FORSKA was applied to simulate the forest development at 488 forest inventory plots in the federal state of Brandenburg, Germany, under two climate and three management scenarios. The transient growth dynamics from 1990 to 2100 were investigated at four sites in different parts of the state, representing the variability of environmental and forest conditions within Brandenburg. The alternative management strategies led to distinct differences in forest composition after 110 years of simulation. The projected climate change affected both forest productivity and species composition. The impacts of alternative management scenarios are discussed. It is concluded that the extended forest gap model can be a valuable tool to support decision making in forest management under global change.
  • Lindner, Potsdam Institute for Climate Impact Research, P.O. Box 60 12 03, D-14412 Potsdam, Germany E-mail: lindner@pik-potsdam.de (email)
  • Lasch, Potsdam Institute for Climate Impact Research, P.O. Box 60 12 03, D-14412 Potsdam, Germany E-mail: pl@nn.de
  • Erhard, Potsdam Institute for Climate Impact Research, P.O. Box 60 12 03, D-14412 Potsdam, Germany E-mail: me@nn.de

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles