Current issue: 58(5)
The study is the first report of a larger project concerning fire ecology in the Finnish boreal forests. Modern forestry has never been practiced in the Ulvinsalo strict nature reserve (2,500 ha) in Northern Finland in the county of Kuhmo. Forest fires have been uncommon because of mosaic of mineral and peat soils. The forests are mostly Norway spruce (Picea abies (L.) H. Karst.) dominated with Scots pine (Pinus sylvestris L.) often as the oldest trees of a stand. Forest fires were dated by counting annual rings from cambium to the fire scar in pines. 73 stands covering 1,207 ha were surveyed, over 80% of which was on mineral soil.
50% of the area had burned at least once during the life time of the present pine trees. 48 different forest fires were found, the first being from the year 1712 and the latest from 1969. The average time elapsed between the fires was about 82±43 years, and range 18–219 years. It was assumed that the stands where no fire scars were found, had, however, regenerated after fires but no fires have occurred since after that. In latter part of the 19th century 21 forest fires were dated, in the other half centuries only 4–9. This may have been caused by the increased human activity in the late 1800’s. The fire rotation of the area is 280 years, and spruce is almost the only tree species, which can regenerate in the present situation.
The PDF includes a summary in English.
In 1933, forest fire caused by locomotive sparkle burned about 600 hectares of forest in a forest district named Vehkatallinmaa, in Central Finland. In 1934–36, the burned area was reforested, using different sowing and planting methods. At the same time, areas with poor runoff were drained. The results from reforestation throughout the area have been good. Also, natural regeneration of coniferous trees, especially Scots pine (Pinus sylvestris L.) has occurred. Even deciduous trees, especially birch (Betula sp.), have regenerated naturally in the area. The forests are an evidence of the adaptability of broadcast sowing on snow crust as a method of reproduction.
The PDF includes a summary in English.
Silva Fennica issue 52 includes presentations held in professional development courses, arranged for foresters working in public administration in 1938. The presentations focus on practical issues in forest management and administration, especially in regional level. The education was arranged by Forest Service.
This presentation describes preparation and forest regeneration methods of a burned area.
The aim of the study was to follow development of vegetation in dry upland forest sites after forest fire. The sample sites were situated in the counties of Muonio, Kolari, Sodankylä, Pelkosenniemi, Savukoski, Kemijärvi and Salla, in the northernmost Finland.
The growth of plant communities can arise either from the vegetation and seeds that survived the fire, or from seeds that spread from the surrounding areas. The development of vegetation in the burned areas was unexpectedly independent of the surrounding areas, which indicates that role of the seeds from the outside of the burned ares is small. The occurence of different species of lichens, moss, scale moss and vascular plants in the burned areas are described in detail. The development of vegetation was strongly dependent on the forest site type. The thin humus layer of Cladina site type burns usually evenly, and also the vegetation develops more evenly than in the more fresh site types. Vegetation typical for burned areas was fully developed within 10-15 years, and after 25 years it began to resemble the vegetation of Cladina site type forests. The ground vegetation of Calluna type burned area was more patchy. It developed quicker than in Cladina type. Absense of lichens made it seem more fertile than is usual for Calluna type. The humus layer of Empetrum-Myrtillus site type burned unevenly, and if the area was lightly burned, the vegetation recovered quickly. The vegetation was often patchy.
The PDF includes a summary in German.
The investigation is divided into statistical and experimental sections, the latter of which were conducted in a Vaccinium type Scots pine (Pinus sylvestris L.) stand with the aim of elucidating the interdependence of soil humidity and meteorological factors. The moisture content of pine needles and moss and wooden cylinders placed on the soil or slightly over the ground was determined by weighing. The results showed that there is correlation between the moisture content of the wooden cylinders and the relative humidity of air during the days without rain. Correlation between moisture content of pine needles and moss with the air was slightly poorer.
In the statistical section, based on meteorological observations made in the geophysical observatory at Sodankylä in Northern Finland in 1920-1943, and forest fire statistics of the area, forest fire days and days without forest fires were divided into 40 temperature-humidity groups. Of the 391 forest fires observed in the area, the cause of the fire was known in 353 cases, and 69% of these were caused by lightning. A forest fire danger index was calculated using the data. A sharp increase in the burned area when the index exceeded the limit k=0.3 seem to be explained by thunderstorms, which are the most notable cause of forest fires in the Sodankylä area.
The forest fire index was calculated also at four meteorological stations in different parts of the country using weather observations in 1927-1936. It appears that the number of days in which the k>0.1 decreases when proceeding northwards, obviously because of the shortening of the summer. On the other hand, the number of days in which k>0.3 increases towards the north.
The PDF includes a summary in English.
The statistics of forest fires in Finland expanded in 1952 to include uninsured forests, when previously the statistics included only fires in state forests and insured forest holdings. For private forests the material is collected by central forestry associations with the aid of district forestry boards, and for state forests by the Forest Service which also prepares the overall statistics on forest fires in the country. Forest fire statistics for 1952 and 1953 have been prepared on the basis of regional grouping by counties.
In 1952 a total of 299 forest fires were discovered, affecting a burnt area of 764 ha. Of these 20 were in state forests, burning 139 ha, and 279 in private forests, burning 625 ha. The average devastated area was 2.6 ha (in state forests 6.9 ha). This year was the easiest from the point of view of forest fires in the period between 1946-1953. The year 1953, on the other hand, was the worst of the period. The number of fires was only 216, but the burnt area was 8,955 ha. In state forests 87 fires devastated 8,624 ha. In private forests 129 fires burned 331 ha. The average area destroyed was 4.2 ha (in state forests 99.1 ha, and in private forests 2.6 ha). The largest fires on state forests were in the northernmost districts of the country.
The Silva Fennica issue 61 was published in honour of professor Eino Saari‘s 60th birthday.
The regeneration of forests in Hämeenkangas area in Southern Finland has been difficult due to various damages from the middle of the 1800s. Few seed trees were left in the area, and artificial regeneration has been used since 1880s. The area became an experimental area of the Forest Research Institute in 1924. The aim of the study was to survey the area before it was transferred to the Finnish Defense Forces.
The original Scots pine (Pinus sylvestris L.) forest of the esker area suffered from many forest fires. The total area is 13,000-14,000 ha, of which the experimental forests of Forest Research Institute cover 6,000 ha. The area is dry upland forest, and drought affects the survival of germlings. Soil frost is a major cause of loss of young seedlings. Sowing method affects the early development of the seedlings. Band sowing proved to be the best method regarding the soil frost. A total of 39 different harmful insect species, 8 pathogen species and 7 other causes of damages have been detected in the area.
The development of seedling stands follow a certain pattern, reported also in other studies. Many of the pine seedling stands develop well until they reach a certain height. After that seedlings begin to suffer from damages, but after reaching another stage develop normally. The damages affect the height growth of the seedlings. Some common damages are caused by Pissoides weevils, needle damages caused by certain beetles, shoot damages by Evetria resinella, and pine blister rust (Peridermium pini and Cronartium flaccidum).
The PDF includes a summary in GermanTotal of 1,305 forest fires was ignited in 1925-1934 in the forests insured by the Metsänomistajain Keskinäinen Metsäpaloapuyhdistys (The Forest Owners' Mutual Forest Fire Insurance Company and the Keskinäinen Vakuutusyhtiö Sampo (The Sampo Mutual Insurance Company). The variation was large: from 34 fires in 1928 to 362 fires in 1933. The forest fires were most abundant in the county of Oulu and Häme. The average size of the burned areas varied from 2.4 hectares to 30.5 hectares. The area of forests that had forest fire insurance increased steadily from 2.2 million hectares in 1925 to 3,7 million hectares in 1934.
The PDF includes a summary in German.
Natural regeneration has been common in Northern Finland, where forest fires have been usual, and the large areas make artificial regeneration expensive. The regeneration, and for instance tree species composition and density of the stand, cannot been controlled. In Northern Finland there is little demand for Betula sp. which is often abundant in the burnt areas. The unburned forests are generally Scots pine (Pinus sylvestris L.) or Norway spruce (Picea abies (L.) H. Karst.) dominated mixed forests with single Betula sp. trees.
The fire destroys birch for the most part in the Vaccinium site type, but the surviving trees produce enough seeds to regenerate the areas. The largest trees of Scots pine usually survive the fires. Pine has good seed years in the north only every 8th or 10th year. Spruce is totally destroyed in the forest fire and the seedlings grow poorly as primary species. The seedling stands are usually dominated by Scots pine and birch, but birch seedlings grow in batches, and do not hinder growth of pine. The drier Calluna site type stands are dominated by Scots pine. Birch seedlings may be abundant in the beginning, but most of them do not survive. Abundant emergent pine trees prevent the growth of seedlings especially in the dry site types, and they should be thinned to guarantee regeneration. Sowing results are better few years after the fire. The birch seedling should be removed from the seedling stands.
The PDF includes a summary in German.
The study is based chiefly on statistics of forest fires in the state forests in 1911-1921, published in the annual reports of Board of Forests (now Metsähallitus, Forest Service). Forest fires burned 37,200 hectares of forests in the state forests in 1911-1921. In Southern Finland the number of fires was 795 and in the Northern Finland 610. The frequency of forest fires is higher in south because of the denser population in the area. The average forest fire ranged 118 hectares in Southern Finland and 39 hectares in the north. Fires broke out most often because of careless use of fire. Weather conditions and the type of the forests influenced the risk of fire. In the north, risk for forest fire is lower because of the high proportion of peatlands. Only 14% of the fires burn the trees of the stand. In Southern Finland 50% of the fires and in Northern Finland 42% of the fires damage only part of the stand. Rest of the fires were surface fires that do not burn the trees. The value of damages by forest fires in the state forests in 1901-1922 was annually in average 139,400 Finnish marks.
The PDF includes a summary in English.
The third part of the six-article series about protection forest in Northern Finland describes prevention of forest fires in the pine timber line area. The article gives a proposal for a forest fire decree. According to the proposal, lighting a campfire should be prohibited in dry and windy times. Vegetation should be cleared around a campfire in the summertime. The local people should be obliged to help to extinguish any forest fire, and given compensation for the work. The compensation would be claimed from the person who lit the fire, if that is known. A fine is collected if forest fire breaks out by negligence.
The article is divided in six parts. The parts II and III of the article series are included in the same PDF. A German summary is in a separate PDF.
The present study is a part of larger project into the size and age of certain forest plants. This study seeks to confirm the size-age relationship of Lycopodium clavatum L. and L. annotium L. stands, and the time of sporal regeneration. The stand dimensions were plotted against the size of bracken (Pteridium aquilinum (L.) Kuhn) and ground pine (Lycopodium complanatum L.) stands growing on the same site, and against the age of the timber and the time of fire on the site.
The method based on parallel measurements carried out in burned forests has proved to be suitable for establishing the rate of spreading of stands and their age. The three club-moss species proved to be much alike in their sporal regeneration. They, as well as bracken, regenerate under the condition created by fire. The largest detached patches are often clones. Both Lycopodium clavatum and L. annotium survive fire poorly. Thus, the maximum size of the clones is usually connected with the last forest fire. Pieces of the shoots may survive the fires.
Sporal regeneration of these species also occur without the aid of fire. As also variation in the annual growth of the shoots can be considerable, the stand size of these species is not as good indicator of the date of fire as with Pteridium aquilinum and L. complanatum. The winding appearance of the shoots increases the error in determination of stand age by the stand size further.
The results emphasize the importance of taking into account the time and spread of the plants in the traditional vegetation analysis. A central question is: what is an individual.
The PDF includes a summary in English.