Current issue: 58(4)

Under compilation: 58(5)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Krista Lõhmus

Category : Research article

article id 1107, category Research article
Arvo Tullus, Arne Sellin, Priit Kupper, Reimo Lutter, Linnar Pärn, Anna K. Jasinska, Meeli Alber, Maarja Kukk, Tea Tullus, Hardi Tullus, Krista Lõhmus, Anu Sõber. (2014). Increasing air humidity – a climate trend predicted for northern latitudes – alters the chemical composition of stemwood in silver birch and hybrid aspen. Silva Fennica vol. 48 no. 4 article id 1107. https://doi.org/10.14214/sf.1107
Keywords: climate change; Betula; Populus; macronutrients; atmospheric humidity; wood characteristics; structural carbohydrates
Highlights: Hybrid aspen and silver birch trees grew more slowly under increased air humidity conditions and had higher concentrations of N and P and a lower K to N ratio in stemwood; Minor species-specific changes were detected in stemwood concentrations of cellulose and hemicellulose; Density, calorific value and concentrations of lignin and ash in stemwood were not affected by elevated humidity.
Abstract | Full text in HTML | Full text in PDF | Author Info
We studied the physicochemical properties of stemwood in saplings of silver birch (Betula pendula Roth) and hybrid aspen (Populus tremula L. × P. tremuloides Michx.), grown for four years under artificially elevated relative air humidity (on average by 7%) in field conditions, using the Free Air Humidity Manipulation (FAHM) research facility in Estonia. Altogether 91 sample trees from three experimental plots with manipulated air humidity and from three control plots were cut in the dormant season and sampled for the analysis of cellulose, hemicellulose, acid detergent lignin, macronutrients (N, P, K), ash content, density, and calorific value of wood. The analysed trees grew significantly more slowly under elevated humidity conditions, with a more pronounced effect on aspens. Significantly higher concentrations of N and P were observed in the stemwood of both aspens and birches grown under elevated humidity. This could be the result of a change in the content of living parenchyma cells and/or enhanced retranslocation of nutrients into wood parenchyma. Additionally, humidification resulted in a significantly higher concentration of cellulose and a lower concentration of hemicellulose in aspen stemwood, and in significantly lower concentrations of cellulose and K in birch stemwood. Elevated humidity did not affect lignin concentration, ash content, basic density and calorific value of stemwood. Results from the FAHM experiment suggest that the increasing air humidity accompanying global warming at northern latitudes will affect the growth and functioning of deciduous trees and forests, with obvious consequences also for forest management and industry.
  • Tullus, Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Lai 40, Tartu 51005, Estonia E-mail: arvo.tullus@ut.ee (email)
  • Sellin, Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Lai 40, Tartu 51005, Estonia E-mail: arne.sellin@ut.ee
  • Kupper, Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Lai 40, Tartu 51005, Estonia E-mail: priit.kupper@ut.ee
  • Lutter, Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51014, Estonia E-mail: reimo.lutter@emu.ee
  • Pärn, Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51014, Estonia E-mail: linnar.parn@emu.ee
  • Jasinska, Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Lai 40, Tartu 51005, Estonia & Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland E-mail: jasiak9@wp.pl
  • Alber, Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Lai 40, Tartu 51005, Estonia E-mail: meeli.alber@ut.ee
  • Kukk, Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Lai 40, Tartu 51005, Estonia E-mail: maarja.kukk@ut.ee
  • Tullus, Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51014, Estonia E-mail: tea.tullus@emu.ee
  • Tullus, Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51014, Estonia E-mail: hardi.tullus@emu.ee
  • Lõhmus, Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Lai 40, Tartu 51005, Estonia E-mail: krista.lohmus@ut.ee
  • Sõber, Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Lai 40, Tartu 51005, Estonia E-mail: anu.sober@ut.ee
article id 294, category Research article
Ülle Püttsepp, Krista Lõhmus, Andres Koppel. (2007). Decomposition of fine roots and α-cellulose in a short rotation willow (Salix spp.) plantation on abandoned agricultural land. Silva Fennica vol. 41 no. 2 article id 294. https://doi.org/10.14214/sf.294
Keywords: decomposition; α-cellulose; fine roots; acid detergent lignin; short rotation forest; Salix spp.
Abstract | View details | Full text in PDF | Author Info
Decomposition of fine roots (<1 mm in diameter) of the clones of Salix viminalis, S. dasyclados and α-cellulose sheets (50 x 10 x 1 mm) was studied in a 6-years old Salix spp. plantation established on abandoned agricultural land in Estonia. The substrates were incubated in litterbags (mesh size 0.14 mm) in 5–10 cm topsoil, in non-fertilised plots for one year. Changes in the ash-free weight of the fine roots were best described by negative exponential models (S. viminalis R2 = 0.98, S. dasyclados R2 = 0.96), and by a linear model for α-cellulose (R2 = 0.63). The sheets of α-cellulose decomposed roughly twice as rapidly as the fine roots (S. viminalis k = 0.325, S. dasyclados k = 0.165). The remaining (of the initial) ash-free weights of the fine roots were 73.3 ± 0.8% (mean ± SE) and 85.8 ± 2.2% respectively, and of the α-cellulose 35.9 ± 8.5%, in the end of the one year of decomposition. The amount of acid detergent (AD) lignin in the fine-roots of S. viminalis increased significantly and did not change in S. dasyclados, suggesting higher activity of microbial decomposers in the first substrate. Of the studied quality parameters, the AD lignin was the major factor determining the different rate of decomposition of the fine roots of S. viminalis and S. dasyclados. Nitrogen was recycled in the fine root sub-system in both Salix species. This knowledge can be applied in the management of Salix plantations, aimed at bioenergy production.
  • Püttsepp, Department of Ecology, Swedish University of Agricultural Sciences, P.O. Box 7072, SE-75007 Uppsala, Sweden; Estonian University of Life Sciences, Kreuzwaldi 64, Tartu 51014, Estonia E-mail: ulle.puttsepp@ekol.slu.se (email)
  • Lõhmus, Institute of Geography, University of Tartu, Vanemuise 46, Tartu 51014, Estonia E-mail: kl@nn.ee
  • Koppel, Estonian University of Life Sciences, Kreuzwaldi 64, Tartu 51014, Estonia E-mail: ak@nn.ee
article id 490, category Research article
Veiko Uri, Hardi Tullus, Krista Lõhmus. (2003). Nutrient allocation, accumulation and above-ground biomass in grey alder and hybrid alder plantations. Silva Fennica vol. 37 no. 3 article id 490. https://doi.org/10.14214/sf.490
Keywords: biomass; Alnus incana; Alnus incana x Alnus glutinosa; grey alder; hybrid alder; nutrient allocation; nutrient accumulation
Abstract | View details | Full text in PDF | Author Info
The aim of the present work was to investigate the nutrient (N,P,K) allocation and accumulation in grey alder (Alnus incana (L.) Moench) and hybrid alder (Alnus incana (L.) Moench x Alnus glutinosa (L.) Gaertn.) plantations growing on former agricultural land and to estimate the above-ground biomass production during 4 years after establishment. In August of the 4th year, when leaf mass was at its maximum, the amount of nitrogen accumulated in above-ground biomass of grey alder stand was 142.0 kg ha–1, the amount of phosphorus 16.3 kg ha–1 and the amount of potassium 49.5 kg ha–1. The amount of nitrogen accumulated in a hybrid alder stand totalled 76.8 kg ha–1, that of phosphorus 6.2 kg ha–1 and that of potassium 28.2 kg ha–1. The smaller amounts of N,P and K bound in the hybrid alder plantation are related to the smaller biomass of the stand. Still, the amounts of N,P and K consumed for the production of one ton of biomass were similar in the case of up to 4-year-old grey alder and hybrid alder stands. In the 4th year, the amount of nutrients consumed in one ton of biomass produced were: 16.0 kg N, 1.6 kg P and 5.4 kg K for grey alder and 14.6 kg N, 1.1 kg P and 5.2 kg K for hybrid alder. In the 4th year the total above-ground biomass (dry mass) of grey alder (15750 plants ha–1) amounted to 12.3 t ha–1, current annual increment being 6.7 t ha–1. In hybrid alder stands (6700 plants ha–1), the respective figures were 6.1 t ha–1 and 4.5 t ha–1. Comparison of the production capacity on the basis of mean stem mass in the 4th year revealed that the stem mass of grey alder exceeded that of hybrid alder (0.64 kg and 0.58 kg, respectively). Grey alder outpaced hybrid alder in height growth; in the 4th year after establishment, the mean height of the grey alder stand was 4.6 ± 0.9 m and that of the hybrid alder plantation 3.5 ± 0.9 m.
  • Uri, Institute of Silviculture, Estonian Agricultural University, Kreutzwaldi 5, 51014 Tartu, Estonia E-mail: vuri@eau.ee (email)
  • Tullus, Institute of Silviculture, Estonian Agricultural University, Kreutzwaldi 5, 51014 Tartu, Estonia E-mail: ht@nn.ee
  • Lõhmus, Institute of Geography, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia E-mail: kl@nn.ee

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles