Current issue: 58(3)

Under compilation: 58(4)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'field layer'

Category : Article

article id 5634, category Article
Leena Finér, Mika Nieminen. (1997). Dry mass and the amounts of nutrients in understorey vegetation before and after fertilization on a drained pine bog. Silva Fennica vol. 31 no. 4 article id 5634. https://doi.org/10.14214/sf.a8536
Keywords: Pinus sylvestris; biomass; peatlands; ground vegetation; field layer; litter; root systems; bottom layer
Abstract | View details | Full text in PDF | Author Info

Dry mass and nutrient (N, P, K, Ca, Mg, B) contents of field layer vegetation and a combination of bottom layer vegetation and litter (referred to as bottom/litter layer in the text) were studied one year before and three years after fertilization (NPK and PK) on a drained low-shrub pine bog in eastern Finland. The results of an earlier study on the tree layer were combined with those of this study in order to estimate the changes caused by fertilization in the total plant biomass and litter. Before fertilization the average dry mass of the field and bottom/litter layers was 8,400 kg ha-1 and 7,650 kg ha-1, respectively. The above-ground parts accounted for 25% of the total field layer biomass. The dry mass of the field and bottom/litter layers together was < 20% of the dry mass accumulated in the total plant biomass and litter. The corresponding figures for N, P, K, Ca, Mg and B were 44%, 38%, 30%, 38%, 31% and 17%, respectively. Fertilization did not significantly affect the dry mass of either the field layer vegetation or the bottom/litter layer. 33% of the applied P was accumulated in the total plant biomass and litter on the PK-fertilized plots, and 25% on the NPK-fertilized plots. For the other elements, the proportions on the PK-fertilized plots were K 31%, Ca 6%, Mg 11% and B 13%. On the NPK-fertilized plots, the corresponding figures were N 62%, K 32%, Ca 6%, Mg 9% and B 13%. Except for B and K, the accumulation of fertilizer nutrients in the understorey vegetation and litter was of the same magnitude or greater than the uptake by the tree layer.

  • Finér, E-mail: lf@mm.unknown (email)
  • Nieminen, E-mail: mn@mm.unknown
article id 4912, category Article
Seppo Kellomäki. (1975). Havaintoja metsän aluskasvillisuuden biomassan ja peittävyyden välisestä suhteesta. Silva Fennica vol. 9 no. 1 article id 4912. https://doi.org/10.14214/sf.a14756
English title: Studies concerning the relationship between biomass and coverage in ground vegetation of a forest stand.
Original keywords: aluskasvillisuus; biomassa; peittävyys; kenttäkerros; puolukkatyyppi; kanervatyyppi
English keywords: biomass; ground vegetation; field layer; Calluna type; Vaccinium type; coverage
Abstract | View details | Full text in PDF | Author Info

The study deals with the relationship between biomass and coverage in ground vegetation of Vaccinium and Calluna forest types. The results show that the biomass of the field layer on both forest types can predict satisfactorily in both coverage values of some the most important species and groups of species. Their total height per plot was used as independent variables. The explaining power of the models constructed for Vaccinium type increased to approximately 57% and for the Calluna type to approximately 74% of the total variation in the amount of dry matter. When the biomass of the bottom layer was predicted using the same kind of variables, the explaining power for the Vaccinium type increased to approximately 35% of the total variation and for the Calluna type approximately 53% of the total variation in the amounts of dry matter. The models for field layer of both Vaccinium and Calluna types were quite well suited for describing the test material. In the case of the bottom layer, the constructed models were not suitable for describing the test material.

The PDF includes a summary in English.

  • Kellomäki, E-mail: sk@mm.unknown (email)
article id 4895, category Article
Seppo Kellomäki. (1974). Metsän aluskasvillisuuden biomassan ja peittävyyden välisestä suhteesta. Silva Fennica vol. 8 no. 1 article id 4895. https://doi.org/10.14214/sf.a14739
English title: The relation between biomass and coverage in ground vegetation of forest stand.
Original keywords: aluskasvillisuus; biomassa; peittävyys; pohjakerros; kuiva-ainemäärä
English keywords: biomass; ground vegetation; field layer; ground layer; dry matter
Abstract | View details | Full text in PDF | Author Info

The possibilities of using results of coverage analyses for estimating the dry matter content of the ground vegetation has been examined in this study. The material covers 150 sample areas, 400 m2 large, which represent ground vegetation of Myrtillus type in the final succession stage. When the material was subjected to linear regression analysis, the amount of dry matter in the field and ground layer has been used as dependant variables and the results of the coverage analysis as the independent variable.

The study shows that it is possible to predict satisfactorily the dry matter content of the ground vegetation by grouping the coverage, according to the coverage weight, into parts of equal size and the using them as independent explaining variables. In particular, the value of the prediction equation for the dry matter content of the field layer could be improved by using the height and density characteristics of the vegetation as explaining variables in addition to the coverage figures. Thus, slightly over 80% of the total variation of the dry matter content of the field layer could be predicted. In the case of the ground layer vegetation, the explaining power rose slightly above 70%.

The PDF includes a summary in English.

  • Kellomäki, E-mail: sk@mm.unknown (email)

Category : Research article

article id 906, category Research article
Eivind Meen, Anders Nielsen, Mikael Ohlson. (2012). Forest stand modelling as a tool to predict performance of the understory herb Cornus suecica. Silva Fennica vol. 46 no. 4 article id 906. https://doi.org/10.14214/sf.906
Keywords: canopy layer; field layer; stand structure dynamics; forest simulator; composite models; Akaike’s information criterion
Abstract | View details | Full text in PDF | Author Info
Forest simulation models have been widely used to predict future stand structure. Generally these models do not include the understory vegetation and its response on stand structure change or other environmental factors. Previous simulation studies have shown that stand structure related variables, e.g. basal area, can explain diversity of the forest floor vegetation in boreal forests. We hypothesise that such variables also can be used to explain the performance of understory species and we conceptualise how plant ecology and forest modelling can be combined to predict the performance of understory plants in Norwegian boreal forests. We predict the performance of an understory plant species (Cornus suecica) over time using simulated values of forest variables as input to models expressing the relationship between forest environment variables and plant performance variables (viz. plant height, plant dry weight, number of flowers, number of branches and number of leaves). We also present relationships between plant performance and explanatory variables commonly used in basic ecological research, variables that currently not are readily compatible with forest simulators (e.g. soil chemical variables).We found basal area of canopy trees being the most important explanatory variable explaining C. suecica performance. The performance variable dry weight was predicted by one single model whereas the other performance variables were best predicted by model averaging. Forest simulations for 150 years showed values of plant performance of C. suecica to be reduced during forest succession.
  • Meen, Norwegian University of Life Sciences, Department of Ecology and Natural Resource Management, P.O. Box 5003, NO-1432 Ås, Norway E-mail: eivind.meen@umb.no (email)
  • Nielsen, Norwegian University of Life Sciences, Department of Ecology and Natural Resource Management, P.O. Box 5003, NO-1432 Ås, Norway E-mail: an@nn.no
  • Ohlson, Norwegian University of Life Sciences, Department of Ecology and Natural Resource Management, P.O. Box 5003, NO-1432 Ås, Norway E-mail: mo@nn.no
article id 508, category Research article
Kai Vellak, Jaanus Paal, Jaan Liira. (2003). Diversity and distribution pattern of bryophytes and vascular plants in a boreal spruce forest. Silva Fennica vol. 37 no. 1 article id 508. https://doi.org/10.14214/sf.508
Keywords: boreal forests; correlation; general linear models; Estonia; field layer; ground layer; spatial patterns
Abstract | View details | Full text in PDF | Author Info
Small scale pattern of bryophyte communities is one of the remarkable sources of diversity in species-poor boreal forests. By means of correlation and general linear model approaches, the relationships between bryophyte vegetation and upper layers, as well as the response of ground and field layer species to several environmental factors, was analyzed in a boreal spruce forest in South-East Estonia. Of the studied factors, the strongest influence on the diversity and spatial distribution of ground and field layer species was found for ‘distance from nearest tree’. Species from different layers react differently to the proximity of trees. Species richness of bryophytes is higher further from trees, whereas more vascular plant species prefer to grow in the vicinity of tree trunks. For bryophyte species richness, the pH of the decay horizon is also important; fewer bryophyte species occur in more acid conditions.
  • Vellak, Institute of Zoology and Botany, Estonian Agricultural University, 181 Riia str., 51014 Tartu, Estonia; Institute of Botany and Ecology, University of Tartu, 40 Lai Str., 51005 Tartu, Estonia E-mail: kvellak@zbi.ee (email)
  • Paal, Institute of Botany and Ecology, University of Tartu, 40 Lai Str., 51005 Tartu, Estonia E-mail: jp@nn.ee
  • Liira, Institute of Botany and Ecology, University of Tartu, 40 Lai Str., 51005 Tartu, Estonia E-mail: jl@nn.ee

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles