Dry mass and nutrient (N, P, K, Ca, Mg, B) contents of field layer vegetation and a combination of bottom layer vegetation and litter (referred to as bottom/litter layer in the text) were studied one year before and three years after fertilization (NPK and PK) on a drained low-shrub pine bog in eastern Finland. The results of an earlier study on the tree layer were combined with those of this study in order to estimate the changes caused by fertilization in the total plant biomass and litter. Before fertilization the average dry mass of the field and bottom/litter layers was 8,400 kg ha-1 and 7,650 kg ha-1, respectively. The above-ground parts accounted for 25% of the total field layer biomass. The dry mass of the field and bottom/litter layers together was < 20% of the dry mass accumulated in the total plant biomass and litter. The corresponding figures for N, P, K, Ca, Mg and B were 44%, 38%, 30%, 38%, 31% and 17%, respectively. Fertilization did not significantly affect the dry mass of either the field layer vegetation or the bottom/litter layer. 33% of the applied P was accumulated in the total plant biomass and litter on the PK-fertilized plots, and 25% on the NPK-fertilized plots. For the other elements, the proportions on the PK-fertilized plots were K 31%, Ca 6%, Mg 11% and B 13%. On the NPK-fertilized plots, the corresponding figures were N 62%, K 32%, Ca 6%, Mg 9% and B 13%. Except for B and K, the accumulation of fertilizer nutrients in the understorey vegetation and litter was of the same magnitude or greater than the uptake by the tree layer.
Coniferous and non-coniferous fine root and rhizome production was measured after one growing season using the ingrowth bag method in Scots pine (Pinus sylvestris L.) stands differing in ages from 7 to 105 years in Southern Finland. Total fine-root production decreased from the 7-year to 20-year-old stands, and then increased slightly in the 85- to 105-year-old stands. Most of the total fine-root biomass in the youngest age groups came from non-conifer species, whereas most of the total fine-root biomass in the three older age groups came from conifer species. The maximum coniferous fine-root production was found to occur at crown closure in the 11- to 13-year-old stands. Rhizome production was the lowest and highest in the 20- and 85- to 105-year-old stands, respectively. The increase in rhizome production in the 85- to 105-year-old stands was associated with an abundant understory cover of Vaccinium myrtillus and V. vitis-idaea and an increase in light penetration. The ingrowth bag method was found to be useful in assessing the relative fine-root production among species-group and successional stages of Scots pine stands.
The PDF includes an abstract in Finnish.
Containerized tree seedlings will be used on an increasing scale in the future in different parts of the world. There are number of techniques for the production of small one-year-old seedlings but it has not been possible to develop a completely satisfactory methods for large containerized seedlings production. In the long-term development of pine plantations established with containerized seedlings the greatest problem has been deformation of the root system. With a new method, based on a sheet of peat and root pruning, it has been possible to produce conifer seedlings with a good root regeneration potential and favourable morphological root system development. The use of small containerized seedlings allows an increase in planting density without any marked increase in regeneration costs.
The PDF includes an abstract in English.
Knowledge on the roots systems and their properties is needed when for example assessing the wintering properties of a plant. The article presents the studies on the roots and their functions made with rye, wheat, oat and barley.
The data has been collected during the whole growing season. The experiments took place in the green houses of the University of Helsinki and on the experiment field in Tikkurila, some kilometres north from Helsinki.
The roots of cultivable crop can be divided according their function, state of development, structure and position in the root system into four classes. The classes are sprouting roots, nutriment roots, nutriment-support roots and support roots.
The PDF contains a summary in Finnish.