Coniferous and non-coniferous fine root and rhizome production was measured after one growing season using the ingrowth bag method in Scots pine (Pinus sylvestris L.) stands differing in ages from 7 to 105 years in Southern Finland. Total fine-root production decreased from the 7-year to 20-year-old stands, and then increased slightly in the 85- to 105-year-old stands. Most of the total fine-root biomass in the youngest age groups came from non-conifer species, whereas most of the total fine-root biomass in the three older age groups came from conifer species. The maximum coniferous fine-root production was found to occur at crown closure in the 11- to 13-year-old stands. Rhizome production was the lowest and highest in the 20- and 85- to 105-year-old stands, respectively. The increase in rhizome production in the 85- to 105-year-old stands was associated with an abundant understory cover of Vaccinium myrtillus and V. vitis-idaea and an increase in light penetration. The ingrowth bag method was found to be useful in assessing the relative fine-root production among species-group and successional stages of Scots pine stands.
The PDF includes an abstract in Finnish.
Use of fast-growing tree plantations on dedicated areas is proposed as a means of reconciling fibre production with conservation objectives. Success of this approach however requires fine-tuning silvicultural scenarios so that survival and growth are optimized while management and environmental costs are minimized. This is particularly challenging for hybrid larch (Larix × marschlinsii Coaz), a shade-intolerant species planted on fertile sites in Quebec (Canada) where legislation prevents the use of chemical herbicides. In this context, multiple motor-manual release treatments are often required, with high impacts on costs and social issues related to the scarcity of a qualified workforce. We established a split-split-plot design on a recently harvested site to assess the main and interaction effects of mechanical site preparation (MSP) intensity (five modalities of trenching or mounding), motor-manual release scenario (one or two treatments) and planting depth (0–3 cm or 3–10 cm) on hybrid larch seedling growth and survival six years after planting. Mechanical site preparation intensity and planting depth did not influence seedling growth after 6 years. The lack of significant interaction between MSP and release scenarios indicates that these operations should be planned independently. A more intensive MSP treatment cannot replace a second motor-manual release on fertile sites, as proposed to reduce costs. Our results also show the significant advantage of performing two motor-manual release treatments two years apart (the first one early in the scenario), over performing a single treatment. Our study provides silvicultural guidelines for the establishment of high-yield exotic larch plantations.