Current issue: 58(4)

Under compilation: 58(5)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'growth modelling'

Category : Article

article id 7516, category Article
Euan G. Mason, A. Graham D. Whyte. (1997). Modelling initial survival and growth of radiata pine in New Zealand. Acta Forestalia Fennica no. 255 article id 7516. https://doi.org/10.14214/aff.7516
Keywords: Pinus radiata; New Zealand; growth modelling; young corps; radiata pine
Abstract | View details | Full text in PDF | Author Info

A sensitive framework has been developed for modelling young radiata pine (Pinus radiata D. Don) survival, its growth and size class distribution, from time of planting to age 5 or 6 years. The data and analysis refer to the Central North Island region of New Zealand. The survival function is derived from a Weibull probability density function, to reflect diminishing mortality with the passage of time in young stands. An anamorphic family of trends was used, as very little between-tree competition can be expected in young stands. An exponential height function was found to fit best the lower portion of its sigmoid form. The most appropriate basal area/ha exponential function included an allometric adjustment which resulted in compatible mean height and basal area/ha models. Each of these equations successfully represented the effects of several establishment practices by making coefficients linear functions of site factors, management activities and their interactions. Height and diameter distribution modelling techniques that ensured compatibility with stand values were employed to represent the effects of management practices on crop variation. Model parameters for this research were estimated using data from site preparation experiments in the region and were tested with some independent data sets.

  • Mason, E-mail: em@mm.unknown (email)
  • Whyte, E-mail: aw@mm.unknown

Category : Research article

article id 10732, category Research article
Ana Aza, A. Maarit I. Kallio, Timo Pukkala, Ari Hietala, Terje Gobakken, Rasmus Astrup. (2022). Species selection in areas subjected to risk of root and butt rot: applying Precision forestry in Norway. Silva Fennica vol. 56 no. 3 article id 10732. https://doi.org/10.14214/sf.10732
Keywords: Norway spruce; Scots pine; growth modelling; precision forestry; root and butt rot severity; tree species selection
Highlights: We present the best species to plant on previously spruce-dominated sites with different site indexes and rot levels; We recommend planting Norway spruce on low-rot sites, Scots pine on higher-rot sites, and allowing natural regeneration on low site indexes; We demonstrate the Precision forestry method for determining the optimal tree species in heterogenous stands; In the case study, the method increased net present value by approximately 6% on average.
Abstract | Full text in HTML | Full text in PDF | Author Info

Norway’s most common tree species, Picea abies (L.) Karst. (Norway spruce), is often infected with Heterobasidion parviporum Niemelä & Korhonen and Heterobasidion annosum (Fr.) Bref.. Because Pinus sylvestris L. (Scots pine) is less susceptible to rot, it is worth considering if converting rot-infested spruce stands to pine improves economic performance. We examined the economically optimal choice between planting Norway spruce and Scots pine for previously spruce-dominated clear-cut sites of different site indexes with initial rot levels varying from 0% to 100% of stumps on the site. While it is optimal to continue to plant Norway spruce in regions with low rot levels, shifting to Scots pine pays off when rot levels get higher. The threshold rot level for changing from Norway spruce to Scots pine increases with the site index. We present a case study demonstrating a practical method (“Precision forestry”) for determining the tree species in a stand at the pixel level when the stand is heterogeneous both in site indexes and rot levels. This method is consistent with the concept of Precision forestry, which aims to plan and execute site-specific forest management activities to improve the quality of wood products while minimising waste, increasing profits, and maintaining environmental quality. The material for the study includes data on rot levels and site indexes in 71 clear-cut stands. Compared to planting the entire stand with a single species, pixel-level optimised species selection increases the net present value in almost every stand, with average increase of approximately 6%.

  • Aza, Norwegian University of Life Sciences, Department of Ecology and Natural Resource Management, PO Box 5003, NO-1432, Ås, Norway ORCID https://orcid.org/0000-0002-6416-6697 E-mail: anfe@nmbu.no (email)
  • Kallio, Norwegian University of Life Sciences, Department of Ecology and Natural Resource Management, PO Box 5003, NO-1432, Ås, Norway E-mail: maarit.kallio@nmbu.no
  • Pukkala, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: timo.pukkala@uef.fi
  • Hietala, Norwegian Institute of Bioeconomy Research, PO Box 115, NO-1431 Ås, Norway E-mail: ari.hietala@nibio.no
  • Gobakken, Norwegian University of Life Sciences, Department of Ecology and Natural Resource Management, PO Box 5003, NO-1432, Ås, Norway E-mail: terje.gobakken@nmbu.no
  • Astrup, Norwegian Institute of Bioeconomy Research, PO Box 115, NO-1431 Ås, Norway E-mail: rasmus.astrup@nibio.no
article id 1019, category Research article
Michael Henke, Stephan Huckemann, Winfried Kurth, Branislav Sloboda. (2014). Reconstructing leaf growth based on non-destructive digitizing and low-parametric shape evolution for plant modelling over a growth cycle. Silva Fennica vol. 48 no. 2 article id 1019. https://doi.org/10.14214/sf.1019
Keywords: growth modelling; non-destructive data acquisition; automated data extraction; image processing tool; leaf shape modelling; reusable modules; Populus x canadensis
Highlights: A complete pipeline for plant organ modelling (at the example of poplar leaves) is presented, from non-destructive data acquisition, over automated data extraction, to growth and shape modelling; Leaf contour models are compared; Resulting “organ” modules are ready for use in FSPMs.
Abstract | Full text in HTML | Full text in PDF | Author Info
A simple and efficient photometric methodology is presented, covering all steps from field data acquisition to binarization and allowing for leaf contour modelling. This method comprises the modelling of area and size (correlated and modelled with a Chapman-Richards growth function, using final length as one parameter), and four shape descriptors, from which the entire contour can be reconstructed rather well using a specific spline methodology. As an improvement of this contour modelling method, a set of parameterized polynomials was used. To model the temporal kinetics of the shape, geodesics in shape spaces were employed. Finally it is shown how this methodology is integrated into the 3D modelling platform GroIMP.
  • Henke, Department Ecoinformatics, Biometrics & Forest Growth, University of Göttingen, 37077 Göttingen, Germany E-mail: mhenke@uni-goettingen.de (email)
  • Huckemann, Institute of Mathematical Stochastics, University of Göttingen, 37077 Göttingen, Germany E-mail: huckeman@math.uni-goettingen.de
  • Kurth, Department Ecoinformatics, Biometrics & Forest Growth, University of Göttingen, 37077 Göttingen, Germany E-mail: wk@informatik.uni-goettingen.de
  • Sloboda, Department Ecoinformatics, Biometrics & Forest Growth, University of Göttingen, 37077 Göttingen, Germany E-mail: bslobod@web.de
article id 262, category Research article
Julian C. Fox, Huiquan Bi, Peter K. Ades. (2008). Modelling spatial dependence in an irregular natural forest. Silva Fennica vol. 42 no. 1 article id 262. https://doi.org/10.14214/sf.262
Keywords: correlogram; Eucalypt; growth modelling; moving average autoregression; Moran’s I; spatial autocorrelation
Abstract | View details | Full text in PDF | Author Info
The spatial dependence present in a natural stand of Eucalyptus pilularis (Smith) dominated mixed species forest was characterised and modelled. Two wildfires imposed a significant spatial dependence on the post disturbance stand. It was hypothesised that spatial variation in the intensity of the wildfires generated the observed structures. The influence of patch formation, micro-site variability and competitive influences were also noted in the residuals of a distance-dependent individual-tree growth model. A methodology capable of modelling these complicated patterns of observed dependence was sought, and candidates included the spatial interaction, direct specification and Papadakis methods. The spatial interaction method with a moving average autoregression was identified as the most appropriate method for explicitly modelling spatial dependence. Both the direct specification and Papadakis methods failed to capture the influence of competition. This study highlights the possibility that stand disturbances such as natural and artificial fires, insect and fungal attacks, and wind and snow damage are capable of imposing powerful spatial dependencies on the post disturbance stand. These dependencies need to be considered if individual tree growth models are to provide valid predictions in disturbed stands.
  • Fox, School of Forest and Ecosystem Science, University of Melbourne, Burnley Campus, 500 Yarra Blvd, Richmond, Victoria 3121 Australia E-mail: jcfox@unimelb.edu.au (email)
  • Bi, Forest Resources Research, New South Wales Department of Primary Industries, PO Box 100, Beecroft, NSW 2119 Australia E-mail: hb@nn.au
  • Ades, School of Forest and Ecosystem Science, University of Melbourne, Burnley Campus, 500 Yarra Blvd, Richmond, Victoria 3121 Australia E-mail: pka@nn.au
article id 320, category Research article
Saija Huuskonen, Jari Hynynen. (2006). Timing and intensity of precommercial thinning and their effects on the first commercial thinning in Scots pine stands. Silva Fennica vol. 40 no. 4 article id 320. https://doi.org/10.14214/sf.320
Keywords: Pinus sylvestris; Scots pine; growth and yield; precommercial thinning; growth modelling; first commercial thinning; diameter development
Abstract | View details | Full text in PDF | Author Info
The effects of the timing and intensity of precommercial thinning on the stand diameter development and wood production in Scots pine stands was addressed. A model was developed in order to assess the thinning response of the stand diameter development. The effect of precommercial and first commercial thinning on the stand volume and the thinning removal at first commercial thinning were also modelled. The models were developed to be applicable for forest management planning purposes. The results are based on Scots pine (Pinus sylvestris L.) trials (13 experiments and 169 plots) located in Southern and Central Finland. Precommercial thinning considerably enhanced the diameter development. Precommercial thinning (at Hdom 3 m to 2000 trees per hectare) increased the mean diameter by 15% at the first commercial thinning stage (Hdom 14 m) compared to the unthinned stand (3000 trees ha–1). Early and intensive precommercial thinning resulted in the strongest response in diameter development. Wide spacing also enhanced the diameter increment. In naturally regenerated stands the diameter development was ca 13% slower than that in seeded stands. The total volume at the time of first commercial thinning was affected by the timing of thinning and the stand structure. The volume of merchantable thinning removal depended on the timing and intensity of precommercial and first commercial thinnings. Delaying the first commercial thinning from 12 meters (Hdom) to 16 meters increased the volume of thinning removal by ca.70%. The early and light precommercial thinning (Hdom 3 m, to density of 3000 trees per hectare) increased the thinning removal by 40% compared to the late and intensive precommercial thinning (at 7 meters to the density of 2000 trees per hectare).
  • Huuskonen, University of Helsinki, Dept. of Forest Ecology, P.O. Box 27, FI-00014 University of Helsinki, Finland E-mail: sh@nn.fi (email)
  • Hynynen, The Finnish Forest Research Institute, Vantaa Research Unit, P.O. Box 18, FI-01301 Vantaa, Finland E-mail: jh@nn.fi

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles