Current issue: 58(5)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'cones'

Category : Article

article id 5451, category Article
Maija Salemaa, Eeva-Liisa Jukola-Sulonen, Martti Lindgren. (1991). Forest condition in Finland, 1986-1990. Silva Fennica vol. 25 no. 3 article id 5451. https://doi.org/10.14214/sf.a15605
Keywords: needle age; Finland; defoliation; discolouration; cones; needle cast; air pollution; leaves
Abstract | View details | Full text in PDF | Author Info

The results of the Finnish forest condition survey carried out during 1986–90 in background areas are presented. The same 3,388 forest trees (1,897 Scots pines (Pinus sylvestris L.), 1,289 Norway spruces (Picea abies (L.) H. Karst. And 202 broadleaves) on 450 mineral soil sample plots were examined annually. Growth characteristics (defoliation, the number of needle age classes, branch damage and needle discolouration), fertility and abiotic and biotic damage express the general vitality of the trees and are not specific for air pollutants. A correlative approach was applied in analysing the factors which may explain the regional pattern and changes in defoliation.

Average tree-specific degree of defoliation was 9% in pine, 21% in spruce and 12% in broadleaves in 1990. Altogether 11% of the pines, 42% of the spruces and 16% of the broadleaves have lost over 20% of their needles or leaves. Defoliation in spruce was the same as in the previous year, but in pine and broadleaves it had slightly decreased. Defoliation had increased by 5 %-units in pine, 16 %-units in spruce and 7 %-units in broadleaves during the whole study period 1986–90.

High stand age and different weather and climatic factors greatly affected forest defoliation in background areas in Finland. Pine cancer (Ascocalyx abietina) has enhanced defoliation in pine in the western part of the country. Air pollutants have evidently contributed to the increase of defoliation in the most polluted parts of Southern Finland. In pine a significant positive correlation was found between modelled sulphur deposition and the average stand-specific degree of defoliation as well as with the increase in average 5-year defoliation in Southern Finland. It is suspected that green algae growing on needles of spruce in Southern Finland indicates elevated nitrogen deposition levels.

The PDF includes an abstract in Finnish.

  • Salemaa, E-mail: ms@mm.unknown (email)
  • Jukola-Sulonen, E-mail: ej@mm.unknown
  • Lindgren, E-mail: ml@mm.unknown
article id 4810, category Article
Pentti Solin. (1970). Kuusen käpyjen säilyttäminen jäähdyttämössä ja sen vaikutus niistä saatavan siemenen itävyyteen. Silva Fennica vol. 4 no. 1 article id 4810. https://doi.org/10.14214/sf.a14598
English title: Cold storage of Norway spruce cones and its effect on seed viability.
Original keywords: kuusi; varastointi; siemenet; itävyys; kävyt; kylmävarasto
English keywords: Norway spruce; Picea abies; germination; storage; viability; seeds; cones; cold storage
Abstract | View details | Full text in PDF | Author Info

The aim of the study was to establish how the cold storage of cones of Norway spruce (Picea abies (L.) H. Karst.) affects the viability of the seeds and the percentage ratio in 7 days. A parallel study was made of the longevity of seed in barn-stored cones subject to weather fluctuations and the longevity of seed extracted immediately and stored in the conventional way in an air-tight container. The cones were collected near Kuopio in Central Finland and near Tampere.

The viability and germination rate of the control sample was constant throughout the storage period. This storage method proved the best. The viability of seeds kept in cones declined in cold storage after 3 ½ months. The cones collected in Tampere were damaged by Laspeyresia strobilella, which affected the viability of the seeds.

The viability of seeds stored in cones in a barn had not weakened by the end of May, however, they deteriorated during the summer, as did the seeds stored in cones in the cold storage. Viability of the seeds was still 94% in October. The germination rate was constant in each lot up to the end of May, after which it decreased to 81.7–86.1% in October.

The results show that healthy spruce cones can be stored in paper sacks in a single layer in cold storage and in an ordinary barn for several months without it affecting the viability of the seeds.

The PDF includes a summary in English.

  • Solin, E-mail: ps@mm.unknown (email)

Category : Article

article id 7158, category Article
Olavi Huuri. (1965). Männyn- ja kuusenkäpyjen varastoinnin vaikutus niistä saatavan siemenen itävyyteen. Acta Forestalia Fennica vol. 78 no. 5 article id 7158. https://doi.org/10.14214/aff.7158
English title: The effects of storage in cones on the viability of pine and spruce seeds.
Original keywords: kuusi; mänty; itävyys; kävyt; siemenkeräys; käpyjen varastointi; metsäpuiden siemenet; siementen varastointi; karistus; itämiskyky
English keywords: Pinus sylvestris; Norway spruce; Picea abies; Scots pine; cones; seeds of forest trees; seed extraction; storage of cones; storage of seeds; germinative capacity
Abstract | View details | Full text in PDF | Author Info

Seed storing experiments with cones of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) were conducted in Oitti seed extracting plant in Southern Finland from February to December 1955. The pine cones were stores for 267 and the spruce coned for 304 days. In four of the storage methods the cones were packed in sacks and another four in wooden boxes. Sample of cones were taken once a month, seeds were extracted and the germinative capacity was tested. The remaining extracted seeds were placed in storage, and in January 1956 moved to cold seed cellar until 1962, when the viability of the seeds was tested.

According to the results, cleaned pine cones can be stores for at least nine months using almost all methods of storage which are commonly used at our seed traction plants, without hazarding the usability of the seeds. The seeds in spruce cones, however, seemed to be more sensitive to conditions during the storage. The germinative capacity of the spruce seeds began to decrease after the beginning of May. Later the seeds were infected with mould, which increased towards the end of the experiment.

Thus, preservation of the germinative capacity of the seeds of pine and spruce requires storage in different conditions. The results suggest that extraction of spruce seeds should be finished during the cold winter months. It seems that seed in the cones of pine and spruce endure storage in piles of paper or cloth sacks at least as well as in wooden boxes. Occasional warming of the storage, snow and foreign material among the cones and an over meter thick cone layer decreased the germinative capacity of spruce seeds during spring and summer. Spruce seeds that had been extracted immediately after collecting of the cones preserved their germinative capacity well during an eight years storage period.

The PDF includes a summary in English.

  • Huuri, E-mail: oh@mm.unknown (email)

Category : Research article

article id 10422, category Research article
Juha Kaitera, Jouni Karhu. (2020). Temperature range for germination of Thekopsora areolata aeciospores from Finnish Norway spruce seed orchards. Silva Fennica vol. 55 no. 1 article id 10422. https://doi.org/10.14214/sf.10422
Keywords: Picea abies; cherry-spruce rust; cones; epidemics; rust diseases
Highlights: Cherry-spruce rust was able to germinate at very low temperature (6 °C) close to the temperature when thermal growth starts; Optimum spore germination occurred between 15–24 °C; High temperature of 30 °C drastically reduced germination; Temperature had the most significant effect on germination, while spore source had less significant effect and agar media a non-significant effect on germination in a Fixed Effects model.
Abstract | Full text in HTML | Full text in PDF | Author Info

Cherry-spruce rust caused by Thekopsora areolata (Fr.) Magnus is a serious cone pathogen of Norway spruce [Picea abies (L.) Karst.]. The rust causes great economical losses in seed orchards specialized in the production of high quality seeds. Germination range of T. areolata aeciospores from rust populations (spore sources) in seven Finnish Norway spruce seed orchards was tested on water agar and malt agar at nine temperatures varying between 6–30 °C. The temperature range of spore germination was high varying between 6 °C and 27 °C, while germination was retarded at 30 °C. The peak in germination rate of all spore sources occurred between 15–24 °C. In a model with fixed effects of agar media, temperature and spore source, temperature had the most significant effect on germination. Spore source had a less significant effect, while agar media had a non-significant effect on germination. The rust was able to germinate at low temperatures corresponding to temperatures when the thermal growing season starts at 5 °C in the spring. As spores from cones from both the spruce canopy and the ground showed very similar germination ranges, it indicated the great capacity of all spores of the rust to germinate early in the spring. Hot temperatures with over 30 °C drastically reduced germination of the rust.

  • Kaitera, Natural Resources Institute Finland (Luke), Natural resources and bioproduction, Paavo Havaksentie 3, FI-90014 University of Oulu, Finland E-mail: juha.kaitera@luke.fi (email)
  • Karhu, Natural Resources Institute Finland (Luke), Natural resources and bioproduction, Paavo Havaksentie 3, FI-90014 University of Oulu, Finland E-mail: jouni.karhu@luke.fi

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles