Current issue: 58(5)
The results of the Finnish forest condition survey carried out during 1986–90 in background areas are presented. The same 3,388 forest trees (1,897 Scots pines (Pinus sylvestris L.), 1,289 Norway spruces (Picea abies (L.) H. Karst. And 202 broadleaves) on 450 mineral soil sample plots were examined annually. Growth characteristics (defoliation, the number of needle age classes, branch damage and needle discolouration), fertility and abiotic and biotic damage express the general vitality of the trees and are not specific for air pollutants. A correlative approach was applied in analysing the factors which may explain the regional pattern and changes in defoliation.
Average tree-specific degree of defoliation was 9% in pine, 21% in spruce and 12% in broadleaves in 1990. Altogether 11% of the pines, 42% of the spruces and 16% of the broadleaves have lost over 20% of their needles or leaves. Defoliation in spruce was the same as in the previous year, but in pine and broadleaves it had slightly decreased. Defoliation had increased by 5 %-units in pine, 16 %-units in spruce and 7 %-units in broadleaves during the whole study period 1986–90.
High stand age and different weather and climatic factors greatly affected forest defoliation in background areas in Finland. Pine cancer (Ascocalyx abietina) has enhanced defoliation in pine in the western part of the country. Air pollutants have evidently contributed to the increase of defoliation in the most polluted parts of Southern Finland. In pine a significant positive correlation was found between modelled sulphur deposition and the average stand-specific degree of defoliation as well as with the increase in average 5-year defoliation in Southern Finland. It is suspected that green algae growing on needles of spruce in Southern Finland indicates elevated nitrogen deposition levels.
The PDF includes an abstract in Finnish.
This paper investigates and models the effects of pruning season and tool on wound occlusion with varying tree and branch characteristics of silver birch (Betula pendula Roth) stems at the pruning height of 0−4 metres. Dates of eight secateurs prunings, three saw prunings and two sticks prunings as well as unpruned control were tested in permanent plots on four sites. Knot occlusion and discolouration in stemwood were measured from about 1600 studied knots of 112 sample trees felled five to six years after pruning in 2010. Knot occlusion rate was modelled according to pruning tool, date, tree growth, and branch characteristics. The occlusion was the fastest in trees pruned in spring or early summer, and the slowest in trees pruned in autumn. Stubs of living branches occluded faster than the dead ones with the same diameter. Saw pruning resulted in clearly better occlusion rates than secateurs pruning, caused by the shorter knot stubs after saw pruning. Hitting dead branches away with a stick resulted in the worst occlusion status. The colour defects spread more often upward from the knot than downward. Discolouration in stemwood was detected more frequently near to the pruned branches than the unpruned ones, and more widely near to the stubs of dead branches than the living ones. Most saw and secateurs pruned branches were completely occluded during the experiment, so these prunings were suitable for all branches under 20 mm in diameter, and for living branches even up to 30 mm in fast-growing trees.
Silver birch (Betula pendula Roth) seed origins from the Baltic countries and from Finland were compared in terms of growth, wood density, bark thickness and the incidence of darkened core wood, frost cracks and decay, and the effect of seed origin latitude was examined in two Finnish provenance trials. The material consisted of 21 stand and single tree origins ranging from latitudes 54° to 63°N from the Baltic countries and Finland. The trials, measured at the age of 22 years, were located at Tuusula (60°21´N), southern Finland and at Viitasaari (63°11´N), central Finland. The Baltic origins were superior to the Finnish ones in the southern trial regarding height, whereas in central Finland the Finnish origins grew better. There was no consistent difference between the Baltic and the Finnish group of origins in wood density. Bark thickness decreased with increasing seed origin latitude. The Baltic origins had significantly thicker bark than the Finnish origins. A moderate positive correlation was detected between the seed origin latitude and the incidence of darkened core wood in the southern trial, where the darkened core wood was more common in the Finnish origins than in the Baltic ones. The highest proportion of trees with frost cracks was detected in the south-western Latvian origins growing in central Finland. Seed transfers from the Baltic would have an increasing effect on the bark thickness of birch logs, but no or only minor effects on wood density. Based on our results, there is no reason to recommend the use of non-native Baltic seed origins in Finland instead of the native locally adapted seed sources.
Pruning was performed at midsummer in two genetically homogenous and managed planted silver birch stands in southern Sweden – one aged 9 and one aged 10 years. Wood defects were analysed 10 years thereafter, using the five uppermost twigs of the stems up to a height of 30 dm. The number of trees examined at each site was around 70, of which half were pruned. The main findings were that: a) compared to unpruned trees, pruned trees produced more defect-free wood outside the knots; b) most wood defects were found inside the knots; and c) wood defects like rot and bark ingrowth were similar for pruned and unpruned trees, while discolouration was marginally higher for pruned trees inside knots but similar outside knots. Overall, the results confirm previous findings that pruned birch trees will provide butt logs with higher value than unpruned trees.