Concentration of the phytotoxic air pollutant, ozone (O3) is continually increasing in the lower layer of the troposphere. The purpose of this study was to compare performance of pine sawflies on Scots pine (Pinus sylvestris L.) seedlings in ambient and future levels of ozone. Scots pine seedlings were grown in field fumigation system where the ozone doses in fumigated plots were 1.5–1.6 times the ambient level. Larvae of the European pine sawfly (Neodiprion sertifer Geoffroy and Gilpinia pallida Klug) were reared on the foliage of Scots pine. The levels of resin acids and monoterpenes in foliage were analysed. There were no significant effects of ozone fumigation on sawfly performance or levels of defence compounds in pine foliage. The results suggest that the elevated ozone concentrations do not strongly affect the needle quality of young Scots pine and the importance of these two diprionid sawfly species forest pests.
The effects of realistically elevated O3 and CO2 concentrations on the needle ultrastructure and photosynthesis of ca. 20-year-old Scots pine (Pinus sylvestris L.) saplings were studied during one growth period in open-top field chambers situated on a natural pine heath at Mekrijärvi, in eastern Finland. The experiment included six different treatments: chamberless control, filtered air, ambient air and elevated O3, CO2 and O3 + CO2. Significant increases in the size of chloroplast and starch grains were recorded in the current-year needles of the saplings exposed to elevated CO2 These responses were especially clear in the saplings exposed to elevated O3 + CO2 concentrations. These treatments also delayed the winter hardening process in cells. In the shoots treated with O3, CO2 and combined O3 + CO2 the Pmax was decreased on average by 50% (ambient CO2) and 40% (700 ppm CO2). Photosynthetic efficiency was decreased by 60% in all the treated shoots measured under ambient condition and by 30% in the CO2 and O3 + CO2 treated shoots under 700 ppm. The effect of all the treatments on photosynthesis was depressive which was probably related to evident accumulation of starch in the chloroplasts of the pines treated with CO2 and combined O3 + CO2. But in O3 treated pines, which did not accumulate starch in comparison to pines subjected to ambient air conditions, some injuries may be already present in the photosynthetic machinery.
The eddy covariance technique is a novel micrometeorological method that enables the determination of the atmosphere-biosphere exchange rate of gases such as ozone and carbon dioxide on an ecosystem scale. This paper describes the technique and presents results from the first direct measurements of turbulent fluxes of O3, CO2 and H2O above a forest in Finland. The measurements were performed during 15 July-5 August 1994 above a Scots pine (Pinus sylvestris L.) stand near the Mekrijärvi research station in Eastern Finland.
The expected diurnal cycles were observed in the atmospheric fluxes of O3, CO2 and H2O. The data analysis includes interpretation of the O3 flux in terms of the dry deposition velocity and evaluation the dependency of the net CO2 flux on radiation. The eddy covariance method and the established measurement system has proved suitable for providing high-resolution data for studying ozone deposition to a forest as well as the net carbon balance and related physiological processes of an ecosystem.
The Värriö environmental measurement station has been designed and constructed during 1991 and 1992. The measurement system consists of measurement units for gases (sulphur dioxide, ozone, carbon dioxide), particles, photosynthesis and irradiation. A meteorological station is also included. The preliminary measurement period was started on August, 1991. During the first year (1991–1992) some parts of the system were redeveloped and rebuilt. Full, continuous measurement started in August 1992. The system has been working quite reliably, with good accuracy. The preliminary results show that pollution episodes are observed when the wind direction is from Monchegorsk or Nikel, the main emission sources in Kola Peninsula.
A technique for instrumental scoring of damaged leaves on tobacco (Nicotiana tabacum) indicator plants caused by ozone in the lower atmosphere is being developed. The leaves are photographed in situ with an integrated unit, which illuminates the leaf from behind and keeps the camera in a well-defined position. By using microfilm and a minus green filter, it is possible to obtain negatives where the necrotic flecks appear as dark spots on a white leaf. The negatives are scanned in a TV-system and the size of the damaged fraction of the leaf is calculated by a microprosessor and is shown as a percentage of the leaf.