Current issue: 58(5)

Under compilation: 59(1)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'genetic divergence'

Category : Research article

article id 1691, category Research article
Enéas Ricardo Konzen, Raquel Peron, Márcio Akira Ito, Gilvano Ebling Brondani, Siu Mui Tsai. (2017). Molecular identification of bamboo genera and species based on RAPD-RFLP markers. Silva Fennica vol. 51 no. 4 article id 1691. https://doi.org/10.14214/sf.1691
Keywords: molecular markers; molecular screening; restriction enzymes; genetic divergence; Dendrocalamus; Bambusa
Highlights: We investigated the potential of RAPD-RFLP (Random Amplified Polymorphic DNA, Restriction Fragment Length Polymorphism) in detecting genetic relationships among bamboo genera and species; RFLP profiles resolved in acrylamide gels revealed high number of markers, which accurately differentiated species and genera, based on cophenetic correlation coefficients; We recommend RAPD-RFLP for analyses of genetic diversity and divergence among bamboo genera, species and varieties.
Abstract | Full text in HTML | Full text in PDF | Author Info

Bamboo species have a very significant ecological and economic impact. Determining morphological and genetic differences among bamboo genera and species are crucial to explore desirable traits for breeding purposes. Several advances have been made in the taxonomy of bamboos by using molecular fingerprinting tools and next generation sequencing technologies. Nevertheless, classical molecular markers such as RAPD (Random Amplified Polymorphic DNA), AFLP (Amplified Fragment Length Polymorphism) and ISSR (Inter Simple Sequence Repeats) also provide an accurate discrimination among genera and species. Moreover, the RAPD-RFLP (Random Amplified Polymorphic DNA, Restriction Fragment Length Polymorphism) method, in which amplification products from RAPD are digested with restriction enzymes, is a reliable, fast and cost-effective method for fingerprinting. RAPD-RFLP has been scarcely used in the literature and no report regarding bamboo taxonomy is available with this method. Here we explored the molecular (RAPD, RAPD-RFLP) variation among genera (Bambusa, Dendrocalamus, Guadua and Phyllostachys) and species of bamboo cultivated in Brazil. Both molecular markers allowed clear distinction among the genera studied. Moreover, high cophenetic correlation values in UPGMA clusters indicated their potential for discriminating bamboo species. The digestion of RAPD products (RFLP) resulted in high number of polymorphic bands and produced very characteristic profiles for each genus with three enzyme combinations (HindIII/HaeIII, HinfI/RsaI, and single digestion with MspI). We recommend RAPD-RFLP as a reproducible and informative method for screening differences among genera, species and varieties of bamboos. Providing a cost-effective and accurate method for species identification and characterization is straightforward for bamboo conservation, management and breeding.

  • Konzen, Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture (CENA), University of Sao Paulo (USP), Centenário Av., 303, Piracicaba, SP, P.O. Box 96, Brazil; Forest Sciences, Federal University of Lavras (UFLA), Lavras, MG, P.O. Box 3037, Brazil E-mail: erkonzen@gmail.com (email)
  • Peron, Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture (CENA), University of Sao Paulo (USP), Centenário Av., 303, Piracicaba, SP, P.O. Box 96, Brazil E-mail: rperon@purdue.edu
  • Ito, Embrapa Western Agriculture, Brazilian Agricultural Research Corporation (EMBRAPA), BR 163 Rd., km 253, Dourados, MS, P.O. Box 449, Brazil E-mail: marcio.ito@embrapa.br
  • Brondani, Forest Sciences, Federal University of Lavras (UFLA), Lavras, MG, P.O. Box 3037, Brazil E-mail: gebrondani@gmail.com
  • Tsai, Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture (CENA), University of Sao Paulo (USP), Centenário Av., 303, Piracicaba, SP, P.O. Box 96, Brazil E-mail: tsai@cena.usp.br
article id 1721, category Research article
Anna Hebda, Błażej Wójkiewicz, Witold Wachowiak. (2017). Genetic characteristics of Scots pine in Poland and reference populations based on nuclear and chloroplast microsatellite markers. Silva Fennica vol. 51 no. 2 article id 1721. https://doi.org/10.14214/sf.1721
Keywords: Pinus sylvestris; phylogeography; conifers; genetic divergence; population structure; microsatellite markers; neutral variation
Highlights: Similar genetic variation was found between Polish Scots pine populations from a wide variety of habitats based on nSSR and cpSSR markers; Homogeneity was observed in the genetic structures of Polish and Finnish populations from the continuous pine range; Genetic differentiation in microsatellite markers was identified only when populations from the central pine distribution were compared to the marginal stands.
Abstract | Full text in HTML | Full text in PDF | Author Info

Polymorphisms at a set of eighteen nuclear (nSSR) and chloroplast (cpSSR) microsatellite loci were investigated in sixteen populations of Scots pine (Pinus sylvestris L.) derived from the provenance trial experiment and representative of the species distribution range and climatic zones in Poland. The patterns of genetic variation were compared to the reference samples from the species distribution in Europe and Asia. A similar level of genetic variation and no evidence of population structure was found among the Polish stands. They showed genetic similarity and homogenous patterns of allelic frequency spectra compared to the Northern European populations. Those populations were genetically divergent compared to the marginal populations from Turkey, Spain and Scotland. The population structure patterns reflect the phylogeography of the species and the divergence of populations that most likely do not share recent history. As the analysed provenance trial populations from Poland are diverged in phenotypic traits but are genetically similar, they could be used to test for selection at genomic regions that influence variation in quantitative traits.

  • Hebda, University of Agriculture in Krakow, Faculty of Forestry, Institute of Forest Ecology and Silviculture, Department of Genetics and Forest Tree Breeding, 29 Listopada 46, 31-425 Kraków, Poland ORCID http://orcid.org/0000-0002-3149-8644 E-mail: ana.hebda@gmail.com (email)
  • Wójkiewicz, Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland E-mail: bwojkiew@man.poznan.pl
  • Wachowiak, Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland E-mail: witoldw@man.poznan.pl

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles