Current issue: 58(5)
Two methods of pre-harvest inventory were designed and tested on three cutting sites containing a total of 197,500 m3 of wood. These sites were located on flat-ground boreal forest in north-western Quebec, Canada. Both methods studied involved scaling of trees harvested to clear the road path one year (or more) prior to harvest of adjacent cutblocks.
The first method (ROAD) considers the total road right-of-way volume divided by the total road area cleared. The resulting volume per hectare is then multiplied by the total cut-block area scheduled for harvest during the following year to obtain the total estimated cutting volume. The second method (STRATIFIED) also involves scaling of trees cleared from the road. A volume per hectare is calculated for each stretch of road that crosses a single forest stand. This volume per hectare is then multiplied by the remaining area of the same forest stand scheduled for harvest one year later. The sum of all resulting estimated volumes per stand gives the total estimated cutting-volume for all cut-blocks adjacent to the studied road. A third method (MNR) represent the actual existing technique for estimating cutting volume in the province of Quebec. It involves summing the cut volume for all forest stands. The cut volume is estimated by multiplying the area of each stand by its estimated volume per hectare obtained from standard stock tables.
When the resulting total estimated volume per cut-block for all three methods was compared with the actual measured cut-block volume (MEASURED), the analysis showed that MNR volume estimate was 30% higher than MEASURED. However, no significant difference from MEASURED was observed for volume estimates for ROAD and STRATIFIED methods, which respectively estimated cutting volumes 19% and 5% lower than MEASURED.
Accurately positioned single-tree data obtained from a cut-to-length harvester were used as training harvester plot data for k-nearest neighbor (k-nn) stem diameter distribution modelling applying airborne laser scanning (ALS) information as predictor variables. Part of the same harvester data were also used for stand-level validation where the validation units were stands including all the harvester plots on a systematic grid located within each individual stand. In the validation all harvester plots within a stand and also the neighboring stands located closer than 200 m were excluded from the training data when predicting for plots of a particular stand. We further compared different training harvester plot sizes, namely 200 m2, 400 m2, 900 m2 and 1600 m2. Due to this setup the number of considered stands and the areas within the stands varied between the different harvester plot sizes. Our data were from final fellings in Akershus County in Norway and consisted of altogether 47 stands dominated by Norway spruce. We also had ALS data from the area. We concentrated on estimating characteristics of Norway spruce but due to the k-nn approach, species-wise estimates and stand totals as a sum over species were considered as well. The results showed that in the most accurate cases stand-level merchantable total volume could be estimated with RMSE values smaller than 9% of the mean. This value can be considered as highly accurate. Also the fit of the stem diameter distribution assessed by a variant of Reynold’s error index showed values smaller than 0.2 which are superior to those found in the previous studies. The differences between harvester plot sizes were generally small, showing most accurate results for the training harvester plot sizes 200 m2 and 400 m2.