Current issue: 58(3)

Under compilation: 58(4)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'cut-to-length logging'

Category : Research article

article id 10161, category Research article
Jussi Manner, Anders Mörk, Martin Englund. (2019). Comparing forwarder boom-control systems based on an automatically recorded follow-up dataset. Silva Fennica vol. 53 no. 2 article id 10161. https://doi.org/10.14214/sf.10161
Keywords: automation; cut-to-length logging; haulage; crane work; extraction; boom-tip control
Highlights: Boom-tip control saves time compared to the conventional system; This study introduced a field-study design enabling establishment of causal relationships during ordinary forwarding operations; Although the study design requires some extra arrangements, it efficiently combines the representativeness of conventional follow-up datasets with establishment of causal relationships that traditionally have been possible only through observational time studies or standardized experiments.
Abstract | Full text in HTML | Full text in PDF | Author Info

Crane work is the most time-consuming work element in forwarding. Hence, assist systems like boom-tip control are of interest. The first commercially available boom-tip control for forwarders was introduced in 2013. In this study we analysed whether replacing conventional boom control (CBC) with John Deere’s version of boom-tip control (named Intelligent Boom Control, IBC), increases crane-work productivity. We used data automatically gathered from 10 final-felling stands, covering typical logging conditions for southern, central and northern Sweden. Two John Deere 1510E and two John Deere 1910G forwarders were operated by seven experienced operators during the follow-up study, covering 1238 loads in total. A split-plot design was applied to isolate effects of the boom-control system being used (CBC, IBC). We found that using IBC for loading work (crane work and driving included) saved 5.2% of productive machine time compared to using CBC (p ≤ 0.05). The corresponding saving when using IBC for unloading work was 7.9% (p ≤ 0.05). Depending on geophysical factors, this corresponds to approximately 4% savings in productive machine time for forwarding as a whole, including pure transport (with and without load). Moreover, the study introduced in cut-to-length context a novel field-study design to collect a large follow-up dataset in the course of ordinary forwarding operations. We found the study design to be a cost-efficient way to combine the representativeness of conventional follow-up datasets with the ability to establish causal relationships. Establishment of causal relationships has traditionally been possible only through observational time studies or standardized experiments.

  • Manner, The Forestry Research Institute of Sweden (Skogforsk), Uppsala Science Park, SE-751 83 Uppsala, Sweden ORCID http://orcid.org/0000-0002-4982-3855 E-mail: jussi.manner@skogforsk.se (email)
  • Mörk, The Forestry Research Institute of Sweden (Skogforsk), Uppsala Science Park, SE-751 83 Uppsala, Sweden E-mail: anders.mork@skogforsk.se
  • Englund, The Forestry Research Institute of Sweden (Skogforsk), Uppsala Science Park, SE-751 83 Uppsala, Sweden E-mail: martin.englund@skogforsk.se
article id 1546, category Research article
Jussi Manner, Lauri Palmroth, Tomas Nordfjell, Ola Lindroos. (2016). Load level forwarding work element analysis based on automatic follow-up data. Silva Fennica vol. 50 no. 3 article id 1546. https://doi.org/10.14214/sf.1546
Keywords: harvesting; cut-to-length logging; haulage; data gathering; automatic recording; classification algorithm; Hidden Markov Models
Highlights: Recent developments in on-board technology enables automatic collection of follow-up data on forwarder work; Time consumption per load was more strongly associated with Loading drive distance than with extraction distance, indicating that the relevance of extraction distance as a main indicator of forwarding productivity should be re-considered; Data, within variables, were positively skewed with a few exceptions with normal distributions.
Abstract | Full text in HTML | Full text in PDF | Author Info

Recent developments in on-board technology have enabled automatic collection of follow-up data on forwarder work. The objective of this study was to exploit this possibility to obtain highly representative information on time consumption of specific work elements (including overlapping crane work and driving), with one load as unit of observation, for large forwarders in final felling operations. The data used were collected by the John Deere TimberLink system as nine operators forwarded 8868 loads, in total, at sites in mid-Sweden. Load-sizes were not available. For the average and median extraction distances (219 and 174 m, respectively), Loading, Unloading, Driving empty, Driving loaded and Other time effective work (PM) accounted for ca. 45, 19, 8.5, 7.5 and 14% of total forwarding time consumption, respectively. The average and median total time consumptions were 45.8 and 42.1 minutes/load, respectively. The developed models explained large proportions of the variation of time consumption for the work elements Driving empty and Driving loaded, but minor proportions for the work elements Loading and Unloading. Based on the means, the crane was used during 74.8% of Loading PM time, the driving speed was nonzero during 31.9% of the Loading PM time, and Simultaneous crane work and driving occurred during 6.7% of the Loading PM time. Time consumption per load was more strongly associated with Loading drive distance than with extraction distance, indicating that the relevance of extraction distance as a main indicator of forwarding productivity should be re-considered.

  • Manner, The Forestry Research Institute of Sweden (Skogforsk), Uppsala Science Park, SE-751 83 Uppsala, Sweden E-mail: jussi.manner@skogforsk.se (email)
  • Palmroth, John Deere Forestry, P.O. Box 472, FI-33101 Tampere, Finland E-mail: PalmrothLauri@JohnDeere.com
  • Nordfjell, Swedish University of Agricultural Sciences, Department of Forest Biomaterials and Technology, SE-901 83 Umeå, Sweden E-mail: tomas.nordfjell@slu.se
  • Lindroos, Swedish University of Agricultural Sciences, Department of Forest Biomaterials and Technology, SE-901 83 Umeå, Sweden E-mail: ola.lindroos@slu.se
article id 1030, category Research article
Jussi Manner, Tomas Nordfjell, Ola Lindroos. (2013). Effects of the number of assortments and log concentration on time consumption for forwarding. Silva Fennica vol. 47 no. 4 article id 1030. https://doi.org/10.14214/sf.1030
Keywords: productivity; time study; forest haulage; forwarders; cut-to-length logging; log extraction; terrain transport
Highlights: We analysed the effects of total and forwarded log concentrations (m3 (100 m)–1) and the number of loaded assortments on forwarding; The combination of the number of loaded assortments and their abundance (i.e. forwarded log concentration) affected time consumption most; This knowledge enables improved efficiency by optimizing number and assortment proportions in the various loads required to forward a stand.
Abstract | Full text in HTML | Full text in PDF | Author Info
Forwarding has been carried out for 50 years, but much is still unknown about this work. Its complexity comes from both stand features and essential decision-making. Forwarding time consumption is influenced by e.g. log concentrations and number of assortments. Traditionally, focus has been on the total log concentration (TLC), referring to all logs at the harvesting site. However, we focused on forwarded log concentration (FLC), the load-specific log concentration which depends on the assortment distribution at harvesting site and the load-specific number of assortments. To evaluate the effects of TLC, number of assortments in a load and FLC on the loading and unloading times, a standardized field experiment was carried out. Pile and load sizes were constant, while TLC and FLC were manipulated by varying the pile distribution on the test path. For all work elements, the time consumption per m3 was significantly affected by the number of assortments that were loaded, but only the “driving while loading” work element was also significantly influenced by TLC. However, when untangling the intercorrelation between tested factors, it was found that the time consumption for driving while loading significantly decreased as a function of FLC and was unaffected by the number of assortments in a load. That FLC influences the forwarding time consumption highlights the need to study the effects of combining various assortment proportions in a load. Such knowledge will enable analysis of the most efficient number and assortment proportions to combine in the various loads required to forward a given stand.
  • Manner, Swedish University of Agricultural Sciences, Department of Forest Biomaterial and Technology, SE-901 83 Umeå, Sweden E-mail: jussi.manner@slu.se (email)
  • Nordfjell, Swedish University of Agricultural Sciences, Department of Forest Biomaterial and Technology, SE-901 83 Umeå, Sweden E-mail: tomas.nordfjell@slu.se
  • Lindroos, Swedish University of Agricultural Sciences, Department of Forest Biomaterial and Technology, SE-901 83 Umeå, Sweden E-mail: ola.lindroos@slu.se

Category : Research note

article id 24039, category Research note
Jussi Manner, Hagos Lundström. (2024). The effect of forked trees on harvester time consumption in a Pinus contorta final-felling stand. Silva Fennica vol. 58 no. 4 article id 24039. https://doi.org/10.14214/sf.24039
Keywords: productivity; stem quality; stem defect; lodgepole pine; cut-to-length logging; double stem; forking
Highlights: For forked trees, codominant stems double harvester time consumption per tree, while double crowns have only minor impacts on harvester time consumption; Forked trees should be removed during thinning when they can still be time-efficiently multi-tree handled; Dealing with forked trees at a later rotation age, when they are too large for multi-tree handling, becomes excessively time-consuming.
Abstract | Full text in HTML | Full text in PDF | Author Info

The consensus on the factors affecting harvester productivity is generally widely acknowledged in the discipline. However, research results regarding the effect of forking on productivity are diverse. Some studies show that harvester productivity is halved when harvesting double stems compared to single-stem trees, while other studies indicate that forking does not necessarily decrease harvester productivity. These differences in study results can depend on what is considered forking. In our study, the forking occurred above the breast-height level. We defined codominant stems as forked trees too large to be multi-tree handled. In contrast, we defined double crowns as forked trees that could be multi-tree handled. The objective of our study was to analyse how the presence of codominant stems and/or double crowns affects harvester time consumption. The study was conducted in Sweden in 2022, involving two operators and two large harvesters. The 45-year-old Pinus contorta Douglas ex Loudon-dominated stand was clearcut during the study. We found that the presence of codominant stems doubles harvester time consumption per tree, while double crowns had only a minor impact on harvester time consumption. Additionally, total time consumption increased linearly with increasing diameter at breast height. Based on these findings, we recommend that forked trees be removed already during thinning when they can still be time-efficiently multi-tree handled. Dealing with forked trees later during the rotation cycle, when they are too large for multi-tree handling, is excessively time-consuming.

  • Manner, Skogforsk, Uppsala Science Park, 751 83 Uppsala, Sweden ORCID https://orcid.org/0000-0002-4982-3855 E-mail: jussi.manner@skogforsk.se (email)
  • Lundström, Skogforsk, Uppsala Science Park, 751 83 Uppsala, Sweden E-mail: hagos.lundstrom@skogforsk.se
article id 1717, category Research note
Jussi Manner, Olle Gelin, Anders Mörk, Martin Englund. (2017). Forwarder crane’s boom tip control system and beginner-level operators. Silva Fennica vol. 51 no. 2 article id 1717. https://doi.org/10.14214/sf.1717
Keywords: productivity; automation; cut-to-length logging; haulage; crane work; extraction; learning curve
Highlights: Boom tip control (BTC) allows the operator to control boom tip movements directly, instead of controlling each movement separately to achieve the desired boom tip movement; BTC eased boom control, so beginner-level operators using BTC achieved higher productivity than beginner-level operators using a conventional (reference) system; There were no significant differences in the slopes of learning curves between the systems.
Abstract | Full text in HTML | Full text in PDF | Author Info

The forwarder loads processed wood and transports it to a landing. Productivity of forwarding could be improved by increasing driving speed, but difficult forest terrain limits this. According to current literature, crane work is the most time-consuming work element of forwarding, so improving crane work productivity is essential for improving forwarding productivity. One way to do this is through automation of recurrent boom movement patterns, or alternatively automation can be used to ease crane work. When using conventional boom control (CBC), the operator manually controls each of the independent boom joint movements and combines them to achieve a desired boom tip movement, but boom tip control (BTC) allows the operator to control boom tip movements directly. The objective of the present study was to examine whether BTC facilitates crane work and affects the slopes of learning curves for beginner-level forwarder operators. The study was carried out using a standardised test routine to evaluate effects of two fixed factors, system (levels: CBC, BTC) and point of time (four levels), on five dependent variables. Four of the five dependent variables measured ease of boom control and the fifth measured crane work productivity. The results showed that there were no significant differences in the slopes of learning curves between the systems but the BTC did increase crane work productivity and made boom control easier.

  • Manner, The Forestry Research Institute of Sweden (Skogforsk), Uppsala Science Park, SE-751 83 Uppsala, Sweden ORCID http://orcid.org/0000-0002-4982-3855 E-mail: jussi.manner@skogforsk.se (email)
  • Gelin, The Forestry Research Institute of Sweden (Skogforsk), Uppsala Science Park, SE-751 83 Uppsala, Sweden E-mail: olle.gelin@skogforsk.se
  • Mörk, The Forestry Research Institute of Sweden (Skogforsk), Uppsala Science Park, SE-751 83 Uppsala, Sweden E-mail: anders.mork@skogforsk.se
  • Englund, The Forestry Research Institute of Sweden (Skogforsk), Uppsala Science Park, SE-751 83 Uppsala, Sweden E-mail: martin.englund@skogforsk.se

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles