Current issue: 58(2)

Under compilation: 58(3)

Scopus CiteScore 2021: 2.8
Scopus ranking of open access forestry journals: 8th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'open data'

Category : Research article

article id 10360, category Research article
Mikko Kukkonen, Eetu Kotivuori, Matti Maltamo, Lauri Korhonen, Petteri Packalen. (2021). Volumes by tree species can be predicted using photogrammetric UAS data, Sentinel-2 images and prior field measurements. Silva Fennica vol. 55 no. 1 article id 10360. https://doi.org/10.14214/sf.10360
Keywords: forest inventory; satellite image; open data; drone; stereo matching; unmanned aircraft system
Highlights: A UAS-based species-specific forest inventory approach that avoids new field measurements is presented; Models were constructed using previously measured training plots and remotely sensed data; Bi-seasonal Sentinel-2 data were beneficial in the prediction of species-specific volumes; RMSE values associated with the prediction of volumes by tree species and total volume at the validation plot level were 33.4–62.6% and 9.0%, respectively.
Abstract | Full text in HTML | Full text in PDF | Author Info

Photogrammetric point clouds obtained with unmanned aircraft systems (UAS) have emerged as an alternative source of remotely sensed data for small area forest management inventories (FMI). Nonetheless, it is often overlooked that small area FMI require considerable field data in addition to UAS data, to support the modelling of forest attributes. In this study, we propose a method whereby tree volumes by species are predicted with photogrammetric UAS data and Sentinel-2 images, using models fitted with airborne laser scanning data. The study area is in a managed boreal forest area in Eastern Finland. First, we predicted total volume with UAS point cloud metrics using a prior regression model fitted in another area with ALS data. Tree species proportions were then predicted by k nearest neighbor (k-NN) imputation based on bi-seasonal Sentinel-2 images without measuring new field plot data. Species-specific volumes were then obtained by multiplying the total volume by species proportions. The relative root mean square error (RMSE) values for total and species-specific volume predictions at the validation plot level (30 m × 30 m) were 9.0%, and 33.4–62.6%, respectively. Our approach appears promising for species-specific small area FMI in Finland and in comparable forest conditions in which suitable field plots are available.

  • Kukkonen, University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: mikko.kukkonen@uef.fi (email)
  • Kotivuori, University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: eetu.kotivuori@uef.fi
  • Maltamo, University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: matti.maltamo@uef.fi
  • Korhonen, University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: lauri.korhonen@uef.fi
  • Packalen, University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: petteri.packalen@uef.fi

Category : Research note

article id 10197, category Research note
Ville Kankare, Ville Luoma, Ninni Saarinen, Jussi Peuhkurinen, Markus Holopainen, Mikko Vastaranta. (2019). Assessing feasibility of the forest trafficability map for avoiding rutting – a case study. Silva Fennica vol. 53 no. 3 article id 10197. https://doi.org/10.14214/sf.10197
Keywords: remote sensing; open data; preharvest information; stand trafficability
Highlights: A static trafficability map was developed to provide information about suitable harvesting season; The majority (91.7%) of the evaluated thinning stands were harvested without causing rutting damage if operations were timed correctly in relation to the static trafficability map information; The static trafficability map provides reliable and slightly conservative estimation of the forest trafficability for supporting forest operations.
Abstract | Full text in HTML | Full text in PDF | Author Info

Information on forest trafficability (i.e. carrying capacity of the forest floor) is required before harvesting operations in Southern Boreal forest conditions. It describes the seasons when harvesting operations may take place without causing substantial damage to the forest soil using standard logging machinery. The available trafficability information have been based on subjective observations made during the wood procurement planning. For supporting forest operations, an open access map product has been developed to provide information on trafficability of forests. The forest stands are distributed into classes that characterize different harvesting seasons based on topographic wetness index, amount of vegetation, ground water height and ditch depth. The main goal of this case study was to evaluate the information of the static forest trafficability map in relation to the detected rutting within logging tracks measured in the field. The analysis concentrated on thinning stands since the effect of rutting is significant on the growth of the remaining trees. The results showed that the static trafficability map provided reliable and slightly conservative estimation of the forest trafficability. The majority (91.7%) of the evaluated stands were harvested without causing significant damage if harvesting was timed correctly compared to the trafficability information. However, it should be pointed out that the weather history at small scale, the skills of a driver, and effects of used machinery are not considered in the map product although they can have a considerable impact on the rutting.

  • Kankare, School of Forest Sciences, University of Eastern Finland, P.O. Box 111, Joensuu FI-80101, Finland; Department of Forest Sciences, University of Helsinki, FI-00014 University of Helsinki, Finland ORCID https://orcid.org/0000-0001-6038-1579 E-mail: ville.kankare@uef.fi (email)
  • Luoma, Department of Forest Sciences, University of Helsinki, FI-00014 University of Helsinki, Finland E-mail: ville.luoma@helsinki.fi
  • Saarinen, Department of Forest Sciences, University of Helsinki, FI-00014 University of Helsinki, Finland; School of Forest Sciences, University of Eastern Finland, P.O. Box 111, Joensuu FI-80101, Finland E-mail: ninni.saarinen@helsinki.fi
  • Peuhkurinen, Arbonaut Oy, Malminkaari 13–19, FI-00700 Helsinki, Finland E-mail: jussi.peuhkurinen@arbonaut.com
  • Holopainen, Department of Forest Sciences, University of Helsinki, FI-00014 University of Helsinki, Finland E-mail: markus.holopainen@helsinki.fi
  • Vastaranta, School of Forest Sciences, University of Eastern Finland, P.O. Box 111, Joensuu FI-80101, Finland E-mail: mikko.vastaranta@uef.fi

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles