The effect of harvester operator tree selection or prior tree marking in thinning operations on satisfactory results and performance has been widely discussed. In harvester operator tree selection, the machine operator decides on the fly which trees are selected to remain or cut. The objective of the study was to analyze the effect of prior tree marking, thinning method and topping diameter on harvester performance in low-diameter thinning operations. The entire thinning operation was captured using video technology. Overall, 2.36 ha divided into 48 plots with 5202 trees were thinned with an average diameter at breast height (dbh) over bark for all plots of between 12.5 and 14.7 cm. In total, 3122 trees were harvested, resulting in 60% removal of stem number over all plots. The harvester achieved a mean productivity of 7.38 m3 PMH0–1 with 1.48 m3 PMH0–1 SEM, with stem volume having the major influence on harvesting productivity. Prior tree marking, topping and thinning method did not significantly affect productivity. Without prior tree marking by the foresters, harvesting removal was shifted toward lower diameters. Within the unmarked plots, 7.0% of the residual trees were damaged compared with 3.2% in marked plots.
Early thinnings are laborious and costly. Thus forest companies are searching for cost and time efficient ways to carry out this task. The study’s purpose was to determine the productivity of the EF28 accumulating energy wood harvesting head in harvesting small-diameter hornbeam (Carpinus betulus L.) undergrowth trees and evaluate the effect of its multi-tree handling (MTH) capacity on time consumption. The harvester was a wheeled, three-axle Komatsu 911. A time study of 7.1 hours on 19 plots, with a total area of 0.76 ha was conducted. On average, the harvested tree volume was 8 dm³ and the stand density was 2666 trees/ha. The productivity was modelled with MTH conduction, mean diameter at breast height and the number of trees handled per cycle as independent variables. On average, MTH took 27% longer per cycle, increased extracted volume per cycle by 33% and consequently increased productivity with 5.0%. In 71.9% of the cycles more than one tree was handled and if so, dimensions were smaller than in single-tree handling (5.8 cm vs. 12.0 cm). Maximum felling diameter of 23 cm was about 15% smaller than in softwood (according to the manufacturer’s specifications) and the driver didn’t exploit the EF28’s theoretical potential in terms of trees handled per cycle. It can be concluded that the head could significantly improve productivity in small-diameter wood procurement.