The aim of this study was to estimate economic losses, which are caused by forest inventory errors of tree species proportions and site types. Our study data consisted of ground truth data and four sets of erroneous tree species proportions. They reflect the accuracy of tree species proportions in four remote sensing data sets, namely 1) airborne laser scanning (ALS) with 2D aerial image, 2) 2D aerial image, 3) 3D and 2D aerial image data together and 4) satellite data. Furthermore, our study data consisted of one simulated site type data set. We used the erroneous tree species proportions to optimise the timing of forest harvests and compared that to the true optimum obtained with ground truth data. According to the results, the mean losses of Net Present Value (NPV) because of erroneous tree species proportions at an interest rate of 3% varied from 124.4 € ha–1 to 167.7 € ha–1. The smallest losses were observed using tree species proportions predicted using ALS data and largest using satellite data. In those stands, respectively, in which tree species proportion errors actually caused economic losses, they were 468 € ha–1 on average with tree species proportions based on ALS data. In turn, site type errors caused only small losses. Based on this study, accurate tree species identification seems to be very important with respect to operational forest inventory.
Airborne laser scanning (ALS) has been the main method for acquiring data for forest management planning in Finland and Norway in the last decade. Recently, digital aerial photogrammetry (DAP) has provided an interesting alternative, as the accuracy of stand-based estimates has been quite close to that of ALS while the costs are markedly smaller. Thus, it is important to know if the better accuracy of ALS is worth the higher costs for forest owners. In many recent studies, the value of forest inventory information in the harvest scheduling has been examined, for instance through cost-plus-loss analysis. Cost-plus-loss means that the quality of the data is accounted for in monetary terms through calculating the losses due to errors in the data in the forest management planning context. These costs are added to the inventory costs. In the current study, we compared the losses of ALS and DAP at plot level. According to the results, the data produced using DAP are as good as data produced using ALS from a decision making point of view, even though ALS is slightly more accurate. ALS is better than DAP only if the data will be used for more than 15 years before acquiring new data, and even then the difference is quite small. Thus, the increased errors in DAP do not significantly affect the results from a decision making point of view, and ALS and DAP data can be equally well recommended to the forest owners for management planning. The decision of which data to acquire, can thus be made based on the availability of the data on first hand and the costs of acquiring it on the second hand.