Full text of this article is only available in PDF format.

Lauri Korhonen (email), Kari T. Korhonen, Pauline Stenberg, Matti Maltamo, Miina Rautiainen

Local models for forest canopy cover with beta regression

Korhonen L., Korhonen K. T., Stenberg P., Maltamo M., Rautiainen M. (2007). Local models for forest canopy cover with beta regression. Silva Fennica vol. 41 no. 4 article id 275. https://doi.org/10.14214/sf.275

Abstract

Accurate field measurement of the forest canopy cover is too laborious to be used in extensive forest inventories. A possible alternative to the separate canopy cover measurements is to utilize the correlations between the percent canopy cover and easier-to-measure forest variables, especially the basal area. A fairly new analysis technique, the beta regression, is specially designed for modelling percentages. As an extension to the generalized linear models, the beta regression takes into account the distribution of the model residuals, and uses a logistic link function to ensure logical predictions. In this study, the beta regression method was found to perform well in conifer dominated study area located in central Finland. The same model shape, with basal area, tree height and an additional predictor (Scots pine: site fertility, Norway spruce: percentage of hardwoods) as independent variables, produced good results for both pine and spruce dominated sites. The models had reasonably high pseudo R-squared values (pine: 0.91, spruce: 0.87) and low standard errors (pine: 6.3%, spruce: 5.9%) for the fitting data, and also performed well in a cross validation test. The models were also tested on separate test plots located in a different geographical area, where the prediction errors were slightly larger (pine: 8.8%, spruce: 7.4%). In pine plots, the model fit was further improved by introducing additional predictors such as stand age and density. This improved also the performance of the models in the cross validation test, but weakened the results for the external data set. Our results indicated that the beta regression method offers a noteworthy alternative to separate canopy cover measurements, especially if time is limited and the models can be applied in the same region where the modelling data were collected.

Keywords
beta regression; canopy cover; forest canopy

Author Info
  • Korhonen, University of Joensuu, Faculty of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail lauri.korhonen@joensuu.fi (email)
  • Korhonen, Finnish Forest Research Institute, Joensuu Research Unit, P.O. Box 68, FI-80101 Joensuu, Finland E-mail ktk@nn.fi
  • Stenberg, Univ. of Helsinki, Dept of Forest Resource Management, P.O. BOX 27, FI-00014 University of Helsinki, Finland E-mail ps@nn.fi
  • Maltamo, University of Joensuu, Faculty of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail mm@nn.fi
  • Rautiainen, Univ. of Helsinki, Dept of Forest Resource Management, P.O. BOX 27, FI-00014 University of Helsinki, Finland E-mail mr@nn.fi

Received 15 May 2007 Accepted 4 October 2007 Published 31 December 2007

Views 5503

Available at https://doi.org/10.14214/sf.275 | Download PDF

Creative Commons License CC BY-SA 4.0

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content

Your selected articles
Your search results
Maltamo M., (1997) Comparing basal area diameter distributions esti.. Silva Fennica vol. 31 no. 1 article id 5609
Uuttera J., Maltamo M. (1995) Impact of regeneration method on stand structure.. Silva Fennica vol. 29 no. 4 article id 5562
Korhonen K. T., Maltamo M. (1991) The evaluation of forest inventory designs using.. Silva Fennica vol. 25 no. 2 article id 5444
Kilkki P., Maltamo M. et al. (1989) Use of the Weibull function in estimating the ba.. Silva Fennica vol. 23 no. 4 article id 5392
Maltamo M., (2024) “The Final Cut” Silva Fennica vol. 58 no. 5 article id 24069
Maltamo M., (2024) What we pay attention to when we are in the fore.. Silva Fennica vol. 58 no. 2 article id 24020
Maltamo M., (2023) What does it actually mean to measure a sample p.. Silva Fennica vol. 56 no. 4 article id 23005
Maltamo M., (2022) Silva Fennica has improved publishing services b.. Silva Fennica vol. 56 no. 2 article id 10763
Maltamo M., (2022) The persistently developing role of remote sensi.. Silva Fennica vol. 56 no. 1 article id 10711
Maltamo M., (2021) 100 years of national forest inventories Silva Fennica vol. 55 no. 4 article id 10643
Maltamo M., (2020) Re-searching the forests Silva Fennica vol. 54 no. 4 article id 10452
Maltamo M., (2020) Change of the Subject Editor in Silva Fennica Silva Fennica vol. 54 no. 1 article id 10333
Maltamo M., (2019) Silva Fennica in 2019 Silva Fennica vol. 53 no. 1 article id 10164
Jääskeläinen J., Korhonen L. et al. (2024) Individual tree inventory based on uncrewed aeri.. Silva Fennica vol. 58 no. 3 article id 23042
Zhang S., Korhonen L. et al. (2024) How to implement the data collection of leaf are.. Silva Fennica vol. 58 no. 5 article id 24044
Hardenbol A. A., Kuzmin A. et al. (2021) Detection of aspen in conifer-dominated boreal f.. Silva Fennica vol. 55 no. 4 article id 10515
Kukkonen M., Kotivuori E. et al. (2021) Volumes by tree species can be predicted using p.. Silva Fennica vol. 55 no. 1 article id 10360
Karjalainen T., Packalen P. et al. (2019) Predicting factual sawlog volumes in Scots pine .. Silva Fennica vol. 53 no. 4 article id 10183
Korhonen L., Repola J. et al. (2019) Transferability and calibration of airborne lase.. Silva Fennica vol. 53 no. 3 article id 10179
Maltamo M., Hauglin M. et al. (2019) Estimating stand level stem diameter distributio.. Silva Fennica vol. 53 no. 3 article id 10075
Maltamo M., Karjalainen T. et al. (2018) Incorporating tree- and stand-level information .. Silva Fennica vol. 52 no. 3 article id 10006
Korhonen L., Pippuri I. et al. (2013) Detection of the need for seedling stand tending.. Silva Fennica vol. 47 no. 2 article id 952
Villikka M., Packalén P. et al. (2012) The suitability of leaf-off airborne laser scann.. Silva Fennica vol. 46 no. 1 article id 68
Korpela I., Ørka H. O. et al. (2010) Tree species classification using airborne LiDAR.. Silva Fennica vol. 44 no. 2 article id 156
Suvanto A., Maltamo M. (2010) Using mixed estimation for combining airborne la.. Silva Fennica vol. 44 no. 1 article id 164
Maltamo M., Peuhkurinen J. et al. (2009) Predicting tree attributes and quality character.. Silva Fennica vol. 43 no. 3 article id 203
Peuhkurinen J., Maltamo M. et al. (2008) Estimating species-specific diameter distributio.. Silva Fennica vol. 42 no. 4 article id 237
Korhonen L., Korhonen K. T. et al. (2007) Local models for forest canopy cover with beta r.. Silva Fennica vol. 41 no. 4 article id 275
Kangas A., Mehtätalo L. et al. (2007) Modelling percentile based basal area weighted d.. Silva Fennica vol. 41 no. 3 article id 282
Mehtätalo L., Maltamo M. et al. (2006) The use of quantile trees in the prediction of t.. Silva Fennica vol. 40 no. 3 article id 333
Hotanen J.-P., Maltamo M. et al. (2006) Canopy stratification in peatland forests in Fin.. Silva Fennica vol. 40 no. 1 article id 352
Kangas A., Maltamo M. (2002) Anticipating the variance of predicted stand vol.. Silva Fennica vol. 36 no. 4 article id 522
Sironen S., Kangas A. et al. (2001) Estimating individual tree growth with the k-nea.. Silva Fennica vol. 35 no. 4 article id 580
Maltamo M., Eerikäinen K. (2001) The Most Similar Neighbour reference in the yiel.. Silva Fennica vol. 35 no. 4 article id 579
Kangas A., Maltamo M. (2000) Performance of percentile based diameter distrib.. Silva Fennica vol. 34 no. 4 article id 620
Kangas A., Maltamo M. (2000) Percentile based basal area diameter distributio.. Silva Fennica vol. 34 no. 4 article id 619
Tahvanainen T., Kaartinen K. et al. (2007) Comparison of approaches to integrate energy woo.. Silva Fennica vol. 41 no. 1 article id 310