Full text of this article is only available in PDF format.

Annika Kangas (email), Matti Maltamo

Performance of percentile based diameter distribution prediction and Weibull method in independent data sets

Kangas A., Maltamo M. (2000). Performance of percentile based diameter distribution prediction and Weibull method in independent data sets. Silva Fennica vol. 34 no. 4 article id 620. https://doi.org/10.14214/sf.620

Abstract

Diameter distribution is used in most forest management planning packages for predicting stand volume, timber volume and stand growth. The prediction of diameter distribution can be based on parametric distribution functions, distribution-free parametric prediction methods or purely non-parametric methods. In the first case, the distribution is obtained by predicting the parameters of some probability density function. In a distribution-free percentile method, the diameters at certain percentiles of the distribution are predicted with models. In non-parametric methods, the predicted distribution is a linear combination of similar measured stands. In this study, the percentile based diameter distribution is compared to the results obtained with the Weibull method in four independent data sets. In the case of Scots pine, the other methods are also compared to k-nearest neighbour method. The comparison was made with respect to the accuracy of predicted stand volume, saw timber volume and number of stems. The predicted percentile and Weibull distributions were calibrated using number of stems measured from the stand. The information of minimum and maximum diameters were also used, for re-scaling the percentile based distribution or for parameter recovery of Weibull parameters. The accuracy of the predicted stand characteristics were also compared for calibrated distributions. The most reliable results were obtained using the percentile method with the model set including number of stems as a predictor. Calibration improved the results in most cases. However, using the minimum and maximum diameters for parameter recovery proved to be inefficient.

Keywords
stand structure; calibration estimation; Weibull function; diameter distribution prediction; distribution-free method; nearest neighbour method

Author Info
  • Kangas, Finnish Forest Research Institute, Kannus Research Station, P.O. Box 44, FIN-69101 Kannus, Finland E-mail annika.kangas@metla.fi (email)
  • Maltamo, Finnish Forest Research Institute, Joensuu Research Station, P.O. Box 68, FIN-80101 Joensuu, Finland E-mail mm@nn.fi

Received 12 June 2000 Accepted 3 October 2000 Published 31 December 2000

Views 3625

Available at https://doi.org/10.14214/sf.620 | Download PDF

Creative Commons License CC BY-SA 4.0

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content

Your selected articles
Your search results
Maltamo M., (1997) Comparing basal area diameter distributions esti.. Silva Fennica vol. 31 no. 1 article id 5609
Uuttera J., Maltamo M. (1995) Impact of regeneration method on stand structure.. Silva Fennica vol. 29 no. 4 article id 5562
Korhonen K. T., Maltamo M. (1991) The evaluation of forest inventory designs using.. Silva Fennica vol. 25 no. 2 article id 5444
Kilkki P., Maltamo M. et al. (1989) Use of the Weibull function in estimating the ba.. Silva Fennica vol. 23 no. 4 article id 5392
Maltamo M., (2024) “The Final Cut” Silva Fennica vol. 58 no. 5 article id 24069
Maltamo M., (2024) What we pay attention to when we are in the fore.. Silva Fennica vol. 58 no. 2 article id 24020
Maltamo M., (2023) What does it actually mean to measure a sample p.. Silva Fennica vol. 56 no. 4 article id 23005
Maltamo M., (2022) Silva Fennica has improved publishing services b.. Silva Fennica vol. 56 no. 2 article id 10763
Maltamo M., (2022) The persistently developing role of remote sensi.. Silva Fennica vol. 56 no. 1 article id 10711
Maltamo M., (2021) 100 years of national forest inventories Silva Fennica vol. 55 no. 4 article id 10643
Maltamo M., (2020) Re-searching the forests Silva Fennica vol. 54 no. 4 article id 10452
Maltamo M., (2020) Change of the Subject Editor in Silva Fennica Silva Fennica vol. 54 no. 1 article id 10333
Maltamo M., (2019) Silva Fennica in 2019 Silva Fennica vol. 53 no. 1 article id 10164
Jääskeläinen J., Korhonen L. et al. (2024) Individual tree inventory based on uncrewed aeri.. Silva Fennica vol. 58 no. 3 article id 23042
Zhang S., Korhonen L. et al. (2024) How to implement the data collection of leaf are.. Silva Fennica vol. 58 no. 5 article id 24044
Hardenbol A. A., Kuzmin A. et al. (2021) Detection of aspen in conifer-dominated boreal f.. Silva Fennica vol. 55 no. 4 article id 10515
Kukkonen M., Kotivuori E. et al. (2021) Volumes by tree species can be predicted using p.. Silva Fennica vol. 55 no. 1 article id 10360
Karjalainen T., Packalen P. et al. (2019) Predicting factual sawlog volumes in Scots pine .. Silva Fennica vol. 53 no. 4 article id 10183
Korhonen L., Repola J. et al. (2019) Transferability and calibration of airborne lase.. Silva Fennica vol. 53 no. 3 article id 10179
Maltamo M., Hauglin M. et al. (2019) Estimating stand level stem diameter distributio.. Silva Fennica vol. 53 no. 3 article id 10075
Maltamo M., Karjalainen T. et al. (2018) Incorporating tree- and stand-level information .. Silva Fennica vol. 52 no. 3 article id 10006
Korhonen L., Pippuri I. et al. (2013) Detection of the need for seedling stand tending.. Silva Fennica vol. 47 no. 2 article id 952
Villikka M., Packalén P. et al. (2012) The suitability of leaf-off airborne laser scann.. Silva Fennica vol. 46 no. 1 article id 68
Korpela I., Ørka H. O. et al. (2010) Tree species classification using airborne LiDAR.. Silva Fennica vol. 44 no. 2 article id 156
Suvanto A., Maltamo M. (2010) Using mixed estimation for combining airborne la.. Silva Fennica vol. 44 no. 1 article id 164
Maltamo M., Peuhkurinen J. et al. (2009) Predicting tree attributes and quality character.. Silva Fennica vol. 43 no. 3 article id 203
Peuhkurinen J., Maltamo M. et al. (2008) Estimating species-specific diameter distributio.. Silva Fennica vol. 42 no. 4 article id 237
Korhonen L., Korhonen K. T. et al. (2007) Local models for forest canopy cover with beta r.. Silva Fennica vol. 41 no. 4 article id 275
Kangas A., Mehtätalo L. et al. (2007) Modelling percentile based basal area weighted d.. Silva Fennica vol. 41 no. 3 article id 282
Mehtätalo L., Maltamo M. et al. (2006) The use of quantile trees in the prediction of t.. Silva Fennica vol. 40 no. 3 article id 333
Hotanen J.-P., Maltamo M. et al. (2006) Canopy stratification in peatland forests in Fin.. Silva Fennica vol. 40 no. 1 article id 352
Kangas A., Maltamo M. (2002) Anticipating the variance of predicted stand vol.. Silva Fennica vol. 36 no. 4 article id 522
Sironen S., Kangas A. et al. (2001) Estimating individual tree growth with the k-nea.. Silva Fennica vol. 35 no. 4 article id 580
Maltamo M., Eerikäinen K. (2001) The Most Similar Neighbour reference in the yiel.. Silva Fennica vol. 35 no. 4 article id 579
Kangas A., Maltamo M. (2000) Performance of percentile based diameter distrib.. Silva Fennica vol. 34 no. 4 article id 620
Kangas A., Maltamo M. (2000) Percentile based basal area diameter distributio.. Silva Fennica vol. 34 no. 4 article id 619
Tahvanainen T., Kaartinen K. et al. (2007) Comparison of approaches to integrate energy woo.. Silva Fennica vol. 41 no. 1 article id 310