Full text of this article is only available in PDF format.

Annika Kangas (email), Matti Maltamo

Performance of percentile based diameter distribution prediction and Weibull method in independent data sets

Kangas A., Maltamo M. (2000). Performance of percentile based diameter distribution prediction and Weibull method in independent data sets. Silva Fennica vol. 34 no. 4 article id 620. https://doi.org/10.14214/sf.620

Abstract

Diameter distribution is used in most forest management planning packages for predicting stand volume, timber volume and stand growth. The prediction of diameter distribution can be based on parametric distribution functions, distribution-free parametric prediction methods or purely non-parametric methods. In the first case, the distribution is obtained by predicting the parameters of some probability density function. In a distribution-free percentile method, the diameters at certain percentiles of the distribution are predicted with models. In non-parametric methods, the predicted distribution is a linear combination of similar measured stands. In this study, the percentile based diameter distribution is compared to the results obtained with the Weibull method in four independent data sets. In the case of Scots pine, the other methods are also compared to k-nearest neighbour method. The comparison was made with respect to the accuracy of predicted stand volume, saw timber volume and number of stems. The predicted percentile and Weibull distributions were calibrated using number of stems measured from the stand. The information of minimum and maximum diameters were also used, for re-scaling the percentile based distribution or for parameter recovery of Weibull parameters. The accuracy of the predicted stand characteristics were also compared for calibrated distributions. The most reliable results were obtained using the percentile method with the model set including number of stems as a predictor. Calibration improved the results in most cases. However, using the minimum and maximum diameters for parameter recovery proved to be inefficient.

Keywords
stand structure; calibration estimation; Weibull function; diameter distribution prediction; distribution-free method; nearest neighbour method

Author Info
  • Kangas, Finnish Forest Research Institute, Kannus Research Station, P.O. Box 44, FIN-69101 Kannus, Finland E-mail annika.kangas@metla.fi (email)
  • Maltamo, Finnish Forest Research Institute, Joensuu Research Station, P.O. Box 68, FIN-80101 Joensuu, Finland E-mail mm@nn.fi

Received 12 June 2000 Accepted 3 October 2000 Published 31 December 2000

Views 2004

Available at https://doi.org/10.14214/sf.620 | Download PDF

Creative Commons License CC BY-SA 4.0

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content

Your selected articles
Your search results
Kangas A., Korhonen K. T. (1995) Generalizing sample tree information with semipa.. Silva Fennica vol. 29 no. 2 article id 5553
Kangas A., (1994) Classical and model based estimators for forest .. Silva Fennica vol. 28 no. 1 article id 5524
Kangas A., (1991) Updated measurement data as prior information in.. Silva Fennica vol. 25 no. 3 article id 5453
Stenman V., Kangas A. et al. (2023) Upper stem diameter and volume prediction strate.. Silva Fennica vol. 57 no. 3 article id 23021
Kangas A., Myllymäki M. et al. (2023) Understanding uncertainty in forest resources maps Silva Fennica vol. 57 no. 2 article id 22026
Tuominen S., Balazs A. et al. (2020) Comparison of photogrammetric canopy models from.. Silva Fennica vol. 54 no. 5 article id 10291
Katila M., Rajala T. et al. (2020) Assessing local trends in indicators of ecosyste.. Silva Fennica vol. 54 no. 4 article id 10347
Kangas A., Henttonen H. M. et al. (2020) Re-calibrating stem volume models – is there cha.. Silva Fennica vol. 54 no. 4 article id 10269
Haara A., Kangas A. et al. (2019) Economic losses caused by tree species proportio.. Silva Fennica vol. 53 no. 2 article id 10089
Kangas A., Gobakken T. et al. (2018) Value of airborne laser scanning and digital aer.. Silva Fennica vol. 52 no. 1 article id 9923
Tuominen S., Pitkänen T. et al. (2017) Improving Finnish Multi-Source National Forest I.. Silva Fennica vol. 51 no. 4 article id 7743
Korpela I., Mehtätalo L. et al. (2014) Tree species identification in aerial image data.. Silva Fennica vol. 48 no. 3 article id 1087
Mäkinen A., Kangas A. et al. (2012) Using cost-plus-loss analysis to define optimal .. Silva Fennica vol. 46 no. 2 article id 55
Wallenius T., Laamanen R. et al. (2012) Analysing the agreement between an Airborne Lase.. Silva Fennica vol. 46 no. 1 article id 69
Laamanen R., Kangas A. (2011) Large-scale forest owner’s information needs in .. Silva Fennica vol. 45 no. 4 article id 101
Kangas A., Mehtätalo L. et al. (2011) Sensitivity of harvest decisions to errors in st.. Silva Fennica vol. 45 no. 4 article id 100
Pietilä I., Kangas A. et al. (2010) Influence of growth prediction errors on the exp.. Silva Fennica vol. 44 no. 5 article id 111
Räty M., Kangas A. (2010) Segmentation of model localization sub-areas by .. Silva Fennica vol. 44 no. 2 article id 155
Kangas A., Haapakoski R. et al. (2008) Integrating place-specific social values into fo.. Silva Fennica vol. 42 no. 5 article id 467
Kangas A., Mehtätalo L. et al. (2007) Modelling percentile based basal area weighted d.. Silva Fennica vol. 41 no. 3 article id 282
Mehtätalo L., Maltamo M. et al. (2006) The use of quantile trees in the prediction of t.. Silva Fennica vol. 40 no. 3 article id 333
Laukkanen S., Palander T. et al. (2005) Evaluation of the multicriteria approval method .. Silva Fennica vol. 39 no. 2 article id 387
Kangas A., Maltamo M. (2002) Anticipating the variance of predicted stand vol.. Silva Fennica vol. 36 no. 4 article id 522
Sironen S., Kangas A. et al. (2001) Estimating individual tree growth with the k-nea.. Silva Fennica vol. 35 no. 4 article id 580
Kangas A., Kangas J. et al. (2001) Outranking methods as tools in strategic natural.. Silva Fennica vol. 35 no. 2 article id 597
Kangas A., Maltamo M. (2000) Performance of percentile based diameter distrib.. Silva Fennica vol. 34 no. 4 article id 620
Kangas A., Maltamo M. (2000) Percentile based basal area diameter distributio.. Silva Fennica vol. 34 no. 4 article id 619
Saarinen N., White J. C. et al. (2018) Landsat archive holdings for Finland: opportunit.. Silva Fennica vol. 52 no. 3 article id 9986
Kangas A., Hujala T. (2015) Challenges in publishing: producing, assuring an.. Silva Fennica vol. 49 no. 4 article id 1304