Full text of this article is only available in PDF format.

Ilkka Korpela (email), Hans Ole Ørka, Matti Maltamo, Timo Tokola, Juha Hyyppä

Tree species classification using airborne LiDAR – effects of stand and tree parameters, downsizing of training set, intensity normalization, and sensor type

Korpela I., Ørka H. O., Maltamo M., Tokola T., Hyyppä J. (2010). Tree species classification using airborne LiDAR – effects of stand and tree parameters, downsizing of training set, intensity normalization, and sensor type. Silva Fennica vol. 44 no. 2 article id 156. https://doi.org/10.14214/sf.156

Abstract

Tree species identification constitutes a bottleneck in remote sensing-based forest inventory. In passive images the differentiating features overlap and bidirectional reflectance hampers analysis. Airborne LiDAR provides radiometric and geometric information. We examined the single-trees-level response of two LiDAR sensors in over 13 000 forest trees in southern Finland. We focused on the commercially important species. Our aims were to 1) explore the relevant LiDAR features and study their dependencies on stand and tree variables, 2) examine two sensors and their fusion, 3) quantify the gain from intensity normalizations, 4) examine the importance of the size of the training set, and 5) determine the effects of stand age and site fertility. A set of 570 semiurban broad-leaved trees and exotic conifers was analyzed to 6) examine the LiDAR signal in the economically less important species. An accuracy of 88 90% was achieved in the classification of Scots pine, Norway spruce, and birch, using intensity variables. Spruce and birch showed the highest levels of confusion. Downsizing the training set from 30% to 2.5% of all trees had only a marginal effect on the performance of classifiers. The intensity features were dependent on the absolute and relative sizes of trees, especially for birch. The results suggest that leaf size, orientation, and foliage density affect the intensity, which is thus not affected by reflectance only. Some of the ecologically important species in Finland may be separable, since they gave rise to high intensity values. Comparison of the sensors implies that performance of the intensity data for species classification varies between sensors for reasons that remained uncertain. Both range and gain receiver normalization improved species classification. Weighting of the intensity values improved the fusion of two LiDAR datasets.

Keywords
airborne laser scanning; ALS; laser; Optech ALTM3100; Leica ALS50-II; canopy; crown modeling; monoplotting; backscatter amplitude; intensity; discriminant analysis

Author Info
  • Korpela, University of Helsinki, Department of Forest Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland E-mail ilkka.korpela@helsinki.fi (email)
  • Ørka, Norwegian University of Life Sciences, Department of Ecology and Natural Resource Management, P.O.Box 5003, NO-1432 Ås, Norway E-mail hoo@nn.no
  • Maltamo, University of Eastern Finland, School of Forest Science, P.O. Box 111, FI-80101 Joensuu, Finland E-mail mm@nn.fi
  • Tokola, University of Eastern Finland, School of Forest Science, P.O. Box 111, FI-80101 Joensuu, Finland E-mail tt@nn.fi
  • Hyyppä, Finnish Geodetic Institute, Department of Photogrammetry and Remote Sensing, P.O.Box 15, FI-02431 Masala, Finland E-mail jh@nn.fi

Received 11 September 2009 Accepted 8 March 2010 Published 31 December 2010

Views 6417

Available at https://doi.org/10.14214/sf.156 | Download PDF

Creative Commons License CC BY-SA 4.0

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content

Your selected articles
Your search results
Maltamo M., (1997) Comparing basal area diameter distributions esti.. Silva Fennica vol. 31 no. 1 article id 5609
Uuttera J., Maltamo M. (1995) Impact of regeneration method on stand structure.. Silva Fennica vol. 29 no. 4 article id 5562
Korhonen K. T., Maltamo M. (1991) The evaluation of forest inventory designs using.. Silva Fennica vol. 25 no. 2 article id 5444
Kilkki P., Maltamo M. et al. (1989) Use of the Weibull function in estimating the ba.. Silva Fennica vol. 23 no. 4 article id 5392
Maltamo M., (2024) What we pay attention to when we are in the fore.. Silva Fennica vol. 58 no. 2 article id 24020
Maltamo M., (2023) What does it actually mean to measure a sample p.. Silva Fennica vol. 56 no. 4 article id 23005
Maltamo M., (2022) Silva Fennica has improved publishing services b.. Silva Fennica vol. 56 no. 2 article id 10763
Maltamo M., (2022) The persistently developing role of remote sensi.. Silva Fennica vol. 56 no. 1 article id 10711
Maltamo M., (2021) 100 years of national forest inventories Silva Fennica vol. 55 no. 4 article id 10643
Maltamo M., (2020) Re-searching the forests Silva Fennica vol. 54 no. 4 article id 10452
Maltamo M., (2020) Change of the Subject Editor in Silva Fennica Silva Fennica vol. 54 no. 1 article id 10333
Maltamo M., (2019) Silva Fennica in 2019 Silva Fennica vol. 53 no. 1 article id 10164
Jääskeläinen J., Korhonen L. et al. (2024) Individual tree inventory based on uncrewed aeri.. Silva Fennica vol. 58 no. 3 article id 23042
Hardenbol A. A., Kuzmin A. et al. (2021) Detection of aspen in conifer-dominated boreal f.. Silva Fennica vol. 55 no. 4 article id 10515
Kukkonen M., Kotivuori E. et al. (2021) Volumes by tree species can be predicted using p.. Silva Fennica vol. 55 no. 1 article id 10360
Karjalainen T., Packalen P. et al. (2019) Predicting factual sawlog volumes in Scots pine .. Silva Fennica vol. 53 no. 4 article id 10183
Korhonen L., Repola J. et al. (2019) Transferability and calibration of airborne lase.. Silva Fennica vol. 53 no. 3 article id 10179
Maltamo M., Hauglin M. et al. (2019) Estimating stand level stem diameter distributio.. Silva Fennica vol. 53 no. 3 article id 10075
Maltamo M., Karjalainen T. et al. (2018) Incorporating tree- and stand-level information .. Silva Fennica vol. 52 no. 3 article id 10006
Korhonen L., Pippuri I. et al. (2013) Detection of the need for seedling stand tending.. Silva Fennica vol. 47 no. 2 article id 952
Villikka M., Packalén P. et al. (2012) The suitability of leaf-off airborne laser scann.. Silva Fennica vol. 46 no. 1 article id 68
Korpela I., Ørka H. O. et al. (2010) Tree species classification using airborne LiDAR.. Silva Fennica vol. 44 no. 2 article id 156
Suvanto A., Maltamo M. (2010) Using mixed estimation for combining airborne la.. Silva Fennica vol. 44 no. 1 article id 164
Maltamo M., Peuhkurinen J. et al. (2009) Predicting tree attributes and quality character.. Silva Fennica vol. 43 no. 3 article id 203
Peuhkurinen J., Maltamo M. et al. (2008) Estimating species-specific diameter distributio.. Silva Fennica vol. 42 no. 4 article id 237
Korhonen L., Korhonen K. T. et al. (2007) Local models for forest canopy cover with beta r.. Silva Fennica vol. 41 no. 4 article id 275
Kangas A., Mehtätalo L. et al. (2007) Modelling percentile based basal area weighted d.. Silva Fennica vol. 41 no. 3 article id 282
Mehtätalo L., Maltamo M. et al. (2006) The use of quantile trees in the prediction of t.. Silva Fennica vol. 40 no. 3 article id 333
Hotanen J.-P., Maltamo M. et al. (2006) Canopy stratification in peatland forests in Fin.. Silva Fennica vol. 40 no. 1 article id 352
Kangas A., Maltamo M. (2002) Anticipating the variance of predicted stand vol.. Silva Fennica vol. 36 no. 4 article id 522
Sironen S., Kangas A. et al. (2001) Estimating individual tree growth with the k-nea.. Silva Fennica vol. 35 no. 4 article id 580
Maltamo M., Eerikäinen K. (2001) The Most Similar Neighbour reference in the yiel.. Silva Fennica vol. 35 no. 4 article id 579
Kangas A., Maltamo M. (2000) Performance of percentile based diameter distrib.. Silva Fennica vol. 34 no. 4 article id 620
Kangas A., Maltamo M. (2000) Percentile based basal area diameter distributio.. Silva Fennica vol. 34 no. 4 article id 619
Tahvanainen T., Kaartinen K. et al. (2007) Comparison of approaches to integrate energy woo.. Silva Fennica vol. 41 no. 1 article id 310