Full text of this article is only available in PDF format.

Aki Suvanto (email), Matti Maltamo

Using mixed estimation for combining airborne laser scanning data in two different forest areas

Suvanto A., Maltamo M. (2010). Using mixed estimation for combining airborne laser scanning data in two different forest areas. Silva Fennica vol. 44 no. 1 article id 164. https://doi.org/10.14214/sf.164

Abstract

Airborne laser scanning (ALS) data have become the most accurate remote sensing technology for forest inventories. When planning new inventories the costs of fieldwork could be reduced if datasets of old inventory areas are effectively reused in the new area. The aim of this study was to apply mixed estimation using a combination of existing and new field datasets in area-based approach. Additionally, combining datasets with mixed estimation was compared with constructing new local models with smaller datasets. The two forest study areas were in Juuka and Matalansalo, which are located about 120 km apart in eastern Finland. ALS-based regression models were constructed using datasets of Matalansalo (472 reference plots) and Juuka (10–212 reference plots). Models were developed for the basal area median tree diameter and height, mean tree height, stem number, basal area and volume. The work was based on a simulation approach which involved five methods for approximating the regression coefficients. The first method merged the datasets using ordinary least squares (OLS) regression models, whereas the second and third methods combined datasets using mixed estimation on different weighting principles, and the final two estimated local models with predetermined and new independent variables. The results indicate that mixed estimation can improve the accuracy of derived stand variables compared with basic OLS models. Additionally, a sample of 40–50 plots was enough to build local models for basal area and volume and produce at least the equal accuracy of results than any other methods in this study.

Keywords
airborne laser scanning; area-based method; mixed estimation; regression models

Author Info
  • Suvanto, Blom Kartta Oy, Teollisuuskatu 18, FI-80100 Joensuu, Finland E-mail aki.suvanto@blomasa.com (email)
  • Maltamo, University of Eastern Finland, School of Forest Sciences, P.O. Box, FI-80101, Joensuu, Finland E-mail mm@nn.fi

Received 31 January 2008 Accepted 19 January 2010 Published 31 December 2010

Views 3461

Available at https://doi.org/10.14214/sf.164 | Download PDF

Creative Commons License CC BY-SA 4.0

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content

Your selected articles
Your search results
Maltamo M., (1997) Comparing basal area diameter distributions esti.. Silva Fennica vol. 31 no. 1 article id 5609
Uuttera J., Maltamo M. (1995) Impact of regeneration method on stand structure.. Silva Fennica vol. 29 no. 4 article id 5562
Korhonen K. T., Maltamo M. (1991) The evaluation of forest inventory designs using.. Silva Fennica vol. 25 no. 2 article id 5444
Kilkki P., Maltamo M. et al. (1989) Use of the Weibull function in estimating the ba.. Silva Fennica vol. 23 no. 4 article id 5392
Maltamo M., (2024) “The Final Cut” Silva Fennica vol. 58 no. 5 article id 24069
Maltamo M., (2024) What we pay attention to when we are in the fore.. Silva Fennica vol. 58 no. 2 article id 24020
Maltamo M., (2023) What does it actually mean to measure a sample p.. Silva Fennica vol. 56 no. 4 article id 23005
Maltamo M., (2022) Silva Fennica has improved publishing services b.. Silva Fennica vol. 56 no. 2 article id 10763
Maltamo M., (2022) The persistently developing role of remote sensi.. Silva Fennica vol. 56 no. 1 article id 10711
Maltamo M., (2021) 100 years of national forest inventories Silva Fennica vol. 55 no. 4 article id 10643
Maltamo M., (2020) Re-searching the forests Silva Fennica vol. 54 no. 4 article id 10452
Maltamo M., (2020) Change of the Subject Editor in Silva Fennica Silva Fennica vol. 54 no. 1 article id 10333
Maltamo M., (2019) Silva Fennica in 2019 Silva Fennica vol. 53 no. 1 article id 10164
Jääskeläinen J., Korhonen L. et al. (2024) Individual tree inventory based on uncrewed aeri.. Silva Fennica vol. 58 no. 3 article id 23042
Zhang S., Korhonen L. et al. (2024) How to implement the data collection of leaf are.. Silva Fennica vol. 58 no. 5 article id 24044
Hardenbol A. A., Kuzmin A. et al. (2021) Detection of aspen in conifer-dominated boreal f.. Silva Fennica vol. 55 no. 4 article id 10515
Kukkonen M., Kotivuori E. et al. (2021) Volumes by tree species can be predicted using p.. Silva Fennica vol. 55 no. 1 article id 10360
Karjalainen T., Packalen P. et al. (2019) Predicting factual sawlog volumes in Scots pine .. Silva Fennica vol. 53 no. 4 article id 10183
Korhonen L., Repola J. et al. (2019) Transferability and calibration of airborne lase.. Silva Fennica vol. 53 no. 3 article id 10179
Maltamo M., Hauglin M. et al. (2019) Estimating stand level stem diameter distributio.. Silva Fennica vol. 53 no. 3 article id 10075
Maltamo M., Karjalainen T. et al. (2018) Incorporating tree- and stand-level information .. Silva Fennica vol. 52 no. 3 article id 10006
Korhonen L., Pippuri I. et al. (2013) Detection of the need for seedling stand tending.. Silva Fennica vol. 47 no. 2 article id 952
Villikka M., Packalén P. et al. (2012) The suitability of leaf-off airborne laser scann.. Silva Fennica vol. 46 no. 1 article id 68
Korpela I., Ørka H. O. et al. (2010) Tree species classification using airborne LiDAR.. Silva Fennica vol. 44 no. 2 article id 156
Suvanto A., Maltamo M. (2010) Using mixed estimation for combining airborne la.. Silva Fennica vol. 44 no. 1 article id 164
Maltamo M., Peuhkurinen J. et al. (2009) Predicting tree attributes and quality character.. Silva Fennica vol. 43 no. 3 article id 203
Peuhkurinen J., Maltamo M. et al. (2008) Estimating species-specific diameter distributio.. Silva Fennica vol. 42 no. 4 article id 237
Korhonen L., Korhonen K. T. et al. (2007) Local models for forest canopy cover with beta r.. Silva Fennica vol. 41 no. 4 article id 275
Kangas A., Mehtätalo L. et al. (2007) Modelling percentile based basal area weighted d.. Silva Fennica vol. 41 no. 3 article id 282
Mehtätalo L., Maltamo M. et al. (2006) The use of quantile trees in the prediction of t.. Silva Fennica vol. 40 no. 3 article id 333
Hotanen J.-P., Maltamo M. et al. (2006) Canopy stratification in peatland forests in Fin.. Silva Fennica vol. 40 no. 1 article id 352
Kangas A., Maltamo M. (2002) Anticipating the variance of predicted stand vol.. Silva Fennica vol. 36 no. 4 article id 522
Sironen S., Kangas A. et al. (2001) Estimating individual tree growth with the k-nea.. Silva Fennica vol. 35 no. 4 article id 580
Maltamo M., Eerikäinen K. (2001) The Most Similar Neighbour reference in the yiel.. Silva Fennica vol. 35 no. 4 article id 579
Kangas A., Maltamo M. (2000) Performance of percentile based diameter distrib.. Silva Fennica vol. 34 no. 4 article id 620
Kangas A., Maltamo M. (2000) Percentile based basal area diameter distributio.. Silva Fennica vol. 34 no. 4 article id 619
Tahvanainen T., Kaartinen K. et al. (2007) Comparison of approaches to integrate energy woo.. Silva Fennica vol. 41 no. 1 article id 310