Full text of this article is only available in PDF format.

Aki Suvanto (email), Matti Maltamo

Using mixed estimation for combining airborne laser scanning data in two different forest areas

Suvanto A., Maltamo M. (2010). Using mixed estimation for combining airborne laser scanning data in two different forest areas. Silva Fennica vol. 44 no. 1 article id 164. https://doi.org/10.14214/sf.164


Airborne laser scanning (ALS) data have become the most accurate remote sensing technology for forest inventories. When planning new inventories the costs of fieldwork could be reduced if datasets of old inventory areas are effectively reused in the new area. The aim of this study was to apply mixed estimation using a combination of existing and new field datasets in area-based approach. Additionally, combining datasets with mixed estimation was compared with constructing new local models with smaller datasets. The two forest study areas were in Juuka and Matalansalo, which are located about 120 km apart in eastern Finland. ALS-based regression models were constructed using datasets of Matalansalo (472 reference plots) and Juuka (10–212 reference plots). Models were developed for the basal area median tree diameter and height, mean tree height, stem number, basal area and volume. The work was based on a simulation approach which involved five methods for approximating the regression coefficients. The first method merged the datasets using ordinary least squares (OLS) regression models, whereas the second and third methods combined datasets using mixed estimation on different weighting principles, and the final two estimated local models with predetermined and new independent variables. The results indicate that mixed estimation can improve the accuracy of derived stand variables compared with basic OLS models. Additionally, a sample of 40–50 plots was enough to build local models for basal area and volume and produce at least the equal accuracy of results than any other methods in this study.

airborne laser scanning; area-based method; mixed estimation; regression models

Author Info
  • Suvanto, Blom Kartta Oy, Teollisuuskatu 18, FI-80100 Joensuu, Finland E-mail aki.suvanto@blomasa.com (email)
  • Maltamo, University of Eastern Finland, School of Forest Sciences, P.O. Box, FI-80101, Joensuu, Finland E-mail mm@nn.fi

Received 31 January 2008 Accepted 19 January 2010 Published 31 December 2010

Views 2553

Available at https://doi.org/10.14214/sf.164 | Download PDF

Creative Commons License CC BY-SA 4.0

Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content

Your selected articles
Your search results
Noordermeer L., Ørka H. O. et al. (2023) Imputing stem frequency distributions using harv.. Silva Fennica vol. 57 no. 3 article id 23023
Olofsson K., Holmgren J. (2022) Co-registration of single tree maps and data cap.. Silva Fennica vol. 56 no. 3 article id 10712
de Lera Garrido A., Gobakken T. et al. (2022) Estimating forest attributes in airborne laser s.. Silva Fennica vol. 56 no. 2 article id 10695
Ørka H. O., Hansen E. H. et al. (2021) Large-area inventory of species composition usin.. Silva Fennica vol. 55 no. 4 article id 10244
Waga K., Malinen J. et al. (2021) Locally invariant analysis of forest road qualit.. Silva Fennica vol. 55 no. 1 article id 10371
de Lera Garrido A., Gobakken T. et al. (2020) Reuse of field data in ALS-assisted forest inven.. Silva Fennica vol. 54 no. 5 article id 10272
Karjalainen T., Packalen P. et al. (2019) Predicting factual sawlog volumes in Scots pine .. Silva Fennica vol. 53 no. 4 article id 10183
Korhonen L., Repola J. et al. (2019) Transferability and calibration of airborne lase.. Silva Fennica vol. 53 no. 3 article id 10179
Kangas A., Gobakken T. et al. (2018) Value of airborne laser scanning and digital aer.. Silva Fennica vol. 52 no. 1 article id 9923
Bohlin J., Bohlin I. et al. (2017) Mapping forest attributes using data from stereo.. Silva Fennica vol. 51 no. 2 article id 2021
Kotivuori E., Korhonen L. et al. (2016) Nationwide airborne laser scanning based models .. Silva Fennica vol. 50 no. 4 article id 1567
Siipilehto J., Lindeman H. et al. (2016) Reliability of the predicted stand structure for.. Silva Fennica vol. 50 no. 3 article id 1568
Saad R., Wallerman J. et al. (2016) Local pivotal method sampling design combined wi.. Silva Fennica vol. 50 no. 2 article id 1414
Korhonen L., Ali-Sisto D. et al. (2015) Tropical forest canopy cover estimation using sa.. Silva Fennica vol. 49 no. 5 article id 1405
Niemi M., Vastaranta M. et al. (2015) Forest inventory attribute prediction using airb.. Silva Fennica vol. 49 no. 2 article id 1218
Tuominen S., Pitkänen J. et al. (2014) NFI plots as complementary reference data in for.. Silva Fennica vol. 48 no. 2 article id 983
Gobakken T., Korhonen L. et al. (2013) Laser-assisted selection of field plots for an a.. Silva Fennica vol. 47 no. 5 article id 943
Korhonen L., Pippuri I. et al. (2013) Detection of the need for seedling stand tending.. Silva Fennica vol. 47 no. 2 article id 952
Tuominen S., Haapanen R. (2013) Estimation of forest biomass by means of genetic.. Silva Fennica vol. 47 no. 1 article id 902
Holmgren J., Barth A. et al. (2012) Prediction of stem attributes by combining airbo.. Silva Fennica vol. 46 no. 2 article id 56
Villikka M., Packalén P. et al. (2012) The suitability of leaf-off airborne laser scann.. Silva Fennica vol. 46 no. 1 article id 68
Maltamo M., Peuhkurinen J. et al. (2009) Predicting tree attributes and quality character.. Silva Fennica vol. 43 no. 3 article id 203
Peuhkurinen J., Maltamo M. et al. (2008) Estimating species-specific diameter distributio.. Silva Fennica vol. 42 no. 4 article id 237
Korpela I., (2006) Geometrically accurate time series of archived a.. Silva Fennica vol. 40 no. 1 article id 355
White J. C., (2024) Characterizing forest recovery following stand-r.. Silva Fennica vol. 58 no. 2 article id 23076