Full text of this article is only available in PDF format.

Antti Mäkinen (email), Annika Kangas, Mikko Nurmi

Using cost-plus-loss analysis to define optimal forest inventory interval and forest inventory accuracy

Mäkinen A., Kangas A., Nurmi M. (2012). Using cost-plus-loss analysis to define optimal forest inventory interval and forest inventory accuracy. Silva Fennica vol. 46 no. 2 article id 55. https://doi.org/10.14214/sf.55

Abstract

In recent years, optimal inventory accuracy has been analyzed with a cost-plus-loss methodology, where the total costs of inventory include both the measurement costs and the losses from the decisions based on the collected information. Losses occur, when the inaccuracies in the data lead to sub-optimal decisions. In almost all cases, it has been assumed that the accuracy of the once collected data remains the same throughout the planning period, and the period has been from 10 up to 100 years. In reality, the quality of the data deteriorates in time, due to errors in the predicted growth. In this study, we carried out a cost-plus-loss analysis accounting for the errors in (stand-level) growth predictions of basal area and dominant height. In addition, we included the inventory errors of these two variables with several different levels of accuracy, and costs of inventory with several different assumptions of cost structure. Using the methodology presented in this study, we could calculate the optimal inventory interval (life-span of data) minimizing the total costs of inventory and losses through the 30-year planning period. When the inventory costs only to a small extent depended on the accuracy, the optimal inventory period was 5 years and optimal accuracy RMSE 0%. When the costs more and more heavily depended on the accuracy, the optimal interval turned out to be either 10 or 15 years, and the optimal accuracy reduced from RMSE 0% to RMSE 20%. By increasing the accuracy of the growth models, it was possible to reduce the inventory accuracy or lengthen the interval, i.e. obtain clear savings in inventory costs.

Keywords
value of information; prediction error; inventory error

Author Info
  • Mäkinen, Simosol Oy, Rautatietori 4, FI-11130 Riihimäki, Finland E-mail antti.makinen@simosol.fi (email)
  • Kangas, University of Helsinki, Department of Forest Sciences, Helsinki, Finland E-mail ak@nn.fi
  • Nurmi, University of Helsinki, Department of Forest Sciences, Helsinki, Finland E-mail mn@nn.fi

Received 8 December 2010 Accepted 20 January 2012 Published 31 December 2012

Views 3567

Available at https://doi.org/10.14214/sf.55 | Download PDF

Creative Commons License CC BY-SA 4.0

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content

Your selected articles
Your search results
Kangas A., Korhonen K. T. (1995) Generalizing sample tree information with semipa.. Silva Fennica vol. 29 no. 2 article id 5553
Kangas A., (1994) Classical and model based estimators for forest .. Silva Fennica vol. 28 no. 1 article id 5524
Kangas A., (1991) Updated measurement data as prior information in.. Silva Fennica vol. 25 no. 3 article id 5453
Eyvindson K., Kangas A. et al. (2024) Integrating wind disturbances into forest planni.. Silva Fennica vol. 58 no. 4 article id 23044
Stenman V., Kangas A. et al. (2023) Upper stem diameter and volume prediction strate.. Silva Fennica vol. 57 no. 3 article id 23021
Kangas A., Myllymäki M. et al. (2023) Understanding uncertainty in forest resources maps Silva Fennica vol. 57 no. 2 article id 22026
Tuominen S., Balazs A. et al. (2020) Comparison of photogrammetric canopy models from.. Silva Fennica vol. 54 no. 5 article id 10291
Katila M., Rajala T. et al. (2020) Assessing local trends in indicators of ecosyste.. Silva Fennica vol. 54 no. 4 article id 10347
Kangas A., Henttonen H. M. et al. (2020) Re-calibrating stem volume models – is there cha.. Silva Fennica vol. 54 no. 4 article id 10269
Haara A., Kangas A. et al. (2019) Economic losses caused by tree species proportio.. Silva Fennica vol. 53 no. 2 article id 10089
Kangas A., Gobakken T. et al. (2018) Value of airborne laser scanning and digital aer.. Silva Fennica vol. 52 no. 1 article id 9923
Tuominen S., Pitkänen T. et al. (2017) Improving Finnish Multi-Source National Forest I.. Silva Fennica vol. 51 no. 4 article id 7743
Korpela I., Mehtätalo L. et al. (2014) Tree species identification in aerial image data.. Silva Fennica vol. 48 no. 3 article id 1087
Mäkinen A., Kangas A. et al. (2012) Using cost-plus-loss analysis to define optimal .. Silva Fennica vol. 46 no. 2 article id 55
Wallenius T., Laamanen R. et al. (2012) Analysing the agreement between an Airborne Lase.. Silva Fennica vol. 46 no. 1 article id 69
Laamanen R., Kangas A. (2011) Large-scale forest owner’s information needs in .. Silva Fennica vol. 45 no. 4 article id 101
Kangas A., Mehtätalo L. et al. (2011) Sensitivity of harvest decisions to errors in st.. Silva Fennica vol. 45 no. 4 article id 100
Pietilä I., Kangas A. et al. (2010) Influence of growth prediction errors on the exp.. Silva Fennica vol. 44 no. 5 article id 111
Räty M., Kangas A. (2010) Segmentation of model localization sub-areas by .. Silva Fennica vol. 44 no. 2 article id 155
Kangas A., Haapakoski R. et al. (2008) Integrating place-specific social values into fo.. Silva Fennica vol. 42 no. 5 article id 467
Kangas A., Mehtätalo L. et al. (2007) Modelling percentile based basal area weighted d.. Silva Fennica vol. 41 no. 3 article id 282
Mehtätalo L., Maltamo M. et al. (2006) The use of quantile trees in the prediction of t.. Silva Fennica vol. 40 no. 3 article id 333
Laukkanen S., Palander T. et al. (2005) Evaluation of the multicriteria approval method .. Silva Fennica vol. 39 no. 2 article id 387
Kangas A., Maltamo M. (2002) Anticipating the variance of predicted stand vol.. Silva Fennica vol. 36 no. 4 article id 522
Sironen S., Kangas A. et al. (2001) Estimating individual tree growth with the k-nea.. Silva Fennica vol. 35 no. 4 article id 580
Kangas A., Kangas J. et al. (2001) Outranking methods as tools in strategic natural.. Silva Fennica vol. 35 no. 2 article id 597
Kangas A., Maltamo M. (2000) Performance of percentile based diameter distrib.. Silva Fennica vol. 34 no. 4 article id 620
Kangas A., Maltamo M. (2000) Percentile based basal area diameter distributio.. Silva Fennica vol. 34 no. 4 article id 619
Saarinen N., White J. C. et al. (2018) Landsat archive holdings for Finland: opportunit.. Silva Fennica vol. 52 no. 3 article id 9986
Kangas A., Hujala T. (2015) Challenges in publishing: producing, assuring an.. Silva Fennica vol. 49 no. 4 article id 1304