Full text of this article is only available in PDF format.

Tarja Wallenius (email), Risto Laamanen, Jussi Peuhkurinen, Lauri Mehtätalo, Annika Kangas

Analysing the agreement between an Airborne Laser Scanning based forest inventory and a control inventory – a case study in the state owned forests in Finland

Wallenius T., Laamanen R., Peuhkurinen J., Mehtätalo L., Kangas A. (2012). Analysing the agreement between an Airborne Laser Scanning based forest inventory and a control inventory – a case study in the state owned forests in Finland. Silva Fennica vol. 46 no. 1 article id 69. https://doi.org/10.14214/sf.69

Abstract

Airborne laser scanning based forest inventories have recently shown to produce accurate results. However, the accuracy varies according to the test area and used methodology and therefore, an unambiguous and practical quality assessment will be needed as a part of each inventory project. In this study, the accuracy of an ALS inventory was evaluated with a field sampling based control inventory. The agreement between the ALS inventory and the control inventory was analysed with four methods: 1) root mean square error (RMSE) and bias, 2) scatter plots with 95% confidence intervals, 3) Bland-Altman plots and 4) tolerance limits within Bland-Altman plots. Each method has its own special features which have to be taken into account when the agreement is analysed. The pre-defined requirements of the ALS inventory were achieved. A simplified control inventory approach with a slightly narrower focus is proposed to be used in the future. The Bland-Altman plots with the tolerance limits are proposed to be used in quality assessments of operational ALS inventories. Further studies to improve the efficiency of quality assessment are needed.

Keywords
forest inventory; quality assessment; airborne laser scanning

Author Info
  • Wallenius, Metsähallitus, P.O. Box 94, FI-01301 Vantaa, Finland E-mail tarja.wallenius@metsa.fi (email)
  • Laamanen, Metsähallitus, P.O. Box 94, FI-01301 Vantaa, Finland E-mail rl@nn.fi
  • Peuhkurinen, Oy Arbonaut Ltd, Helsinki, Finland E-mail jp@nn.fi
  • Mehtätalo, University of Eastern Finland, School of Forest Sciences, Joensuu, Finland E-mail lm@nn.fi
  • Kangas, University of Helsinki, Department of Forest Sciences, Helsinki, Finland E-mail ak@nn.fi

Received 2 May 2011 Accepted 28 December 2011 Published 31 December 2012

Views 4983

Available at https://doi.org/10.14214/sf.69 | Download PDF

Creative Commons License CC BY-SA 4.0

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content

Your selected articles
Your search results
Jokinen P., (1938) Execution of settlement in compliance to the Lan.. Silva Fennica vol. no. 46 article id 4531
Kuusela K., (1960) Variation of the site patterns and growing stock.. Acta Forestalia Fennica vol. 72 no. 3 article id 7120
Linnamies O., (1959) The state forests of Finland and a general manag.. Acta Forestalia Fennica vol. 68 no. 5 article id 7487
Jääskeläinen J., Korhonen L. et al. (2024) Individual tree inventory based on uncrewed aeri.. Silva Fennica vol. 58 no. 3 article id 23042
Korhonen K. T., Räty M. et al. (2024) Forests of Finland 2019–2023 and their developme.. Silva Fennica vol. 58 no. 5 article id 24045
Noordermeer L., Ørka H. O. et al. (2023) Imputing stem frequency distributions using harv.. Silva Fennica vol. 57 no. 3 article id 23023
de Lera Garrido A., Gobakken T. et al. (2022) Estimating forest attributes in airborne laser s.. Silva Fennica vol. 56 no. 2 article id 10695
Noordermeer L., Næsset E. et al. (2022) Effects of harvester positioning errors on merch.. Silva Fennica vol. 56 no. 1 article id 10608
Korhonen K. T., Ahola A. et al. (2021) Forests of Finland 2014–2018 and their developme.. Silva Fennica vol. 55 no. 5 article id 10662
Ørka H. O., Hansen E. H. et al. (2021) Large-area inventory of species composition usin.. Silva Fennica vol. 55 no. 4 article id 10244
Waga K., Malinen J. et al. (2021) Locally invariant analysis of forest road qualit.. Silva Fennica vol. 55 no. 1 article id 10371
de Lera Garrido A., Gobakken T. et al. (2020) Reuse of field data in ALS-assisted forest inven.. Silva Fennica vol. 54 no. 5 article id 10272
Karjalainen T., Packalen P. et al. (2019) Predicting factual sawlog volumes in Scots pine .. Silva Fennica vol. 53 no. 4 article id 10183
Korhonen L., Repola J. et al. (2019) Transferability and calibration of airborne lase.. Silva Fennica vol. 53 no. 3 article id 10179
Maltamo M., Karjalainen T. et al. (2018) Incorporating tree- and stand-level information .. Silva Fennica vol. 52 no. 3 article id 10006
Kangas A., Gobakken T. et al. (2018) Value of airborne laser scanning and digital aer.. Silva Fennica vol. 52 no. 1 article id 9923
Bohlin J., Bohlin I. et al. (2017) Mapping forest attributes using data from stereo.. Silva Fennica vol. 51 no. 2 article id 2021
Kotivuori E., Korhonen L. et al. (2016) Nationwide airborne laser scanning based models .. Silva Fennica vol. 50 no. 4 article id 1567
Siipilehto J., Lindeman H. et al. (2016) Reliability of the predicted stand structure for.. Silva Fennica vol. 50 no. 3 article id 1568
Saad R., Wallerman J. et al. (2016) Local pivotal method sampling design combined wi.. Silva Fennica vol. 50 no. 2 article id 1414
Niemi M., Vastaranta M. et al. (2015) Forest inventory attribute prediction using airb.. Silva Fennica vol. 49 no. 2 article id 1218
Tuominen S., Pitkänen J. et al. (2014) NFI plots as complementary reference data in for.. Silva Fennica vol. 48 no. 2 article id 983
Gobakken T., Korhonen L. et al. (2013) Laser-assisted selection of field plots for an a.. Silva Fennica vol. 47 no. 5 article id 943
Wulff S., Roberge C. et al. (2013) On the possibility to monitor and assess forest .. Silva Fennica vol. 47 no. 3 article id 1000
Korhonen L., Pippuri I. et al. (2013) Detection of the need for seedling stand tending.. Silva Fennica vol. 47 no. 2 article id 952
Tuominen S., Haapanen R. (2013) Estimation of forest biomass by means of genetic.. Silva Fennica vol. 47 no. 1 article id 902
Holmgren J., Barth A. et al. (2012) Prediction of stem attributes by combining airbo.. Silva Fennica vol. 46 no. 2 article id 56
Villikka M., Packalén P. et al. (2012) The suitability of leaf-off airborne laser scann.. Silva Fennica vol. 46 no. 1 article id 68
Korpela I., Ørka H. O. et al. (2010) Tree species classification using airborne LiDAR.. Silva Fennica vol. 44 no. 2 article id 156
Suvanto A., Maltamo M. (2010) Using mixed estimation for combining airborne la.. Silva Fennica vol. 44 no. 1 article id 164
Maltamo M., Peuhkurinen J. et al. (2009) Predicting tree attributes and quality character.. Silva Fennica vol. 43 no. 3 article id 203
Nuutinen T., Kilpeläinen A. et al. (2009) Future wood and fibre sources – case North Karel.. Silva Fennica vol. 43 no. 3 article id 202
Kankaanhuhta V., Saksa T. et al. (2009) Variation in the results of Norway spruce planti.. Silva Fennica vol. 43 no. 1 article id 217
Peuhkurinen J., Maltamo M. et al. (2008) Estimating species-specific diameter distributio.. Silva Fennica vol. 42 no. 4 article id 237
Holopainen M., Talvitie M. (2006) Effect of data acquisition accuracy on timing of.. Silva Fennica vol. 40 no. 3 article id 335
Korpela I., (2006) Geometrically accurate time series of archived a.. Silva Fennica vol. 40 no. 1 article id 355
Nabuurs G.-J., Schelhaas M.-J. et al. (2000) Validation of the European Forest Information Sc.. Silva Fennica vol. 34 no. 2 article id 638
White J. C., (2024) Characterizing forest recovery following stand-r.. Silva Fennica vol. 58 no. 2 article id 23076
Fridman J., Holm S. et al. (2014) Adapting National Forest Inventories to changing.. Silva Fennica vol. 48 no. 3 article id 1095
Niemi M. T., (2021) Improvements to stream extraction and soil wetne.. Silva Fennica vol. 55 no. 5 article id 10557