Current issue: 58(5)

Under compilation: 59(1)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Andis Zvirgzdins

Category : Research article

article id 10512, category Research article
Mateusz Liziniewicz, Ignacio Barbeito, Andis Zvirgzdins, Lars-Göran Stener, Pentti Niemistö, Nils Fahlvik, Ulf Johansson, Bo Karlsson, Urban Nilsson. (2022). Production of genetically improved silver birch plantations in southern and central Sweden. Silva Fennica vol. 56 no. 1 article id 10512. https://doi.org/10.14214/sf.10512
Keywords: Betula pendula; planting; generalized algebraic difference approach; genetic gain; stand basal area starting function
Highlights: The basal area development of genetically improved birch in Sweden was modeled using a generalized algebraic difference approach; The best model fit, both graphically and statistically was delivered by the Korf base model; The analysis of realized gain trial showed a stability of relative differences in basal area between tested genotypes.
Abstract | Full text in HTML | Full text in PDF | Author Info

Investing in planting genetically improved silver birch (Betula pendula Roth) in Swedish plantations requires understanding how birch stands will develop over their entire rotation. Previous studies have indicated relatively low production of birch compared to Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.). This could result from using unrepresentative basic data, collected from unimproved, naturally-regenerated birch (Betula spp.) growing on inventory plots often located in coniferous stands. The objective of this study was to develop a basal area development function of improved silver birch and evaluate production over a full rotation period. We used data from 52 experiments including planted silver birch of different genetic breeding levels in southern and central Sweden. The experimental plots were established on fertile forest sites and on former agricultural lands, and were managed with different numbers of thinnings and basal area removal regimes. The model best describing total stand basal area development was a dynamic equation derived from the Korf base model. The analysis of the realized gain trial for birch showed a good stability of the early calculated relative differences in basal area between tested genotypes over time. Thus, the relative difference in basal area might be with cautious used as representation of the realized genetic gain. On average forest sites in southern Sweden, improved and planted silver birch could produce between 6–10.5 m3 ha–1 year–1, while on fertile agriculture land the average productivity might be higher, especially with material coming from the improvement program. The performed analysis provided a first step toward predicting the effects of genetic improvement on total volume production and profitability of silver birch. However, more experiments are needed to set up the relative differences between different improved material.

  • Liziniewicz, The Forestry Research Institute of Sweden, Ekebo, SE-268 90 Svalöv, Sweden E-mail: mateusz.liziniewicz@skogforsk.se
  • Barbeito, Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp, Sweden; Université de Lorraine, AgroParisTech, INRAE, UMR Silva, Nancy, France E-mail: ignacio.barbeito@slu.se
  • Zvirgzdins, Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Box 49, 23053 Alnarp, Sweden E-mail: andis.zvirgzdins@slu.se (email)
  • Stener, The Forestry Research Institute of Sweden, Ekebo, SE-268 90 Svalöv, Sweden E-mail: lg.stener@telia.com
  • Niemistö, Natural Resources In-stitute Finland (Luke), Natural resources, Seinäjoki, Finland E-mail: pentti.niemisto@luke.fi
  • Fahlvik, The Forestry Research Institute of Sweden, Ekebo, SE-268 90 Svalöv, Sweden E-mail: nils.fahlvik@skogforsk.se
  • Johansson, Tönnersjöheden Experimental Forest, SLU, Simlångsdalen, Sweden E-mail: ulf.johansson@slu.se
  • Karlsson, The Forestry Research Institute of Sweden, Ekebo, SE-268 90 Svalöv, Sweden E-mail: curly.birch@gmail.com
  • Nilsson, Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Box 49, 23053 Alnarp, Sweden E-mail: urban.nilsson@slu.se

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles