Current issue: 58(5)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Shaohui Zhang

Category : Research article

article id 24044, category Research article
Shaohui Zhang, Lauri Korhonen, Timo Nummenmaa, Simone Bianchi, Matti Maltamo. (2024). How to implement the data collection of leaf area index by means of citizen science and forest gamification? Silva Fennica vol. 58 no. 5 article id 24044. https://doi.org/10.14214/sf.24044
Keywords: forest canopy; crowdsourcing; hinge angle; plant area index; smartphones
Highlights: Citizen science and gamification are proposed for collecting in situ forest leaf area index data; LAI can be estimated by taking smartphone images of forest canopies at 57° zenith angle; Twenty smartphone images per plot are enough to obtain accurate LAI measurements; Additional images may be required in forests with dense or uneven canopy structure.
Abstract | Full text in HTML | Full text in PDF | Author Info
Leaf area index (LAI) is a critical parameter that influences many biophysical processes within forest ecosystems. Collecting in situ LAI measurements by forest canopy hemispherical photography is however costly and laborious. As a result, there is a lack of LAI data for calibration of forest ecosystem models. Citizen science has previously been tested as a solution to obtain LAI measurements from large areas, but simply asking citizen scientists to collect forest canopy images does not stimulate enough interest. As a response, this study investigates how gamified citizen science projects could be implemented with a less laborious data collection scheme. Citizen scientists usually have only mobile phones available for LAI image collection instead of cameras suitable for taking hemispherical canopy images. Our simulation results suggest that twenty directional canopy images per plot can provide LAI estimates that have an accuracy comparable to conventional hemispherical photography with twelve images per plot. To achieve this result, the mobile phone images must be taken at the 57° hinge angle, with four images taken at 90° azimuth intervals at five spread-out locations. However, more images may be needed in forests with large LAI or uneven canopy structure to avoid large errors. Based on these findings, we propose a gamified solution that could guide citizen scientists to collect canopy images according to the proposed scheme.

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles