Current issue: 58(5)

Under compilation: 59(1)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Ulla Puranen

Category : Research article

article id 231, category Research article
Hilppa Gregow, Ulla Puranen, Ari Venäläinen, Heli Peltola, Seppo Kellomäki, David Schultz. (2008). Temporal and spatial occurrence of strong winds and large snow load amounts in Finland during 1961-2000. Silva Fennica vol. 42 no. 4 article id 231. https://doi.org/10.14214/sf.231
Keywords: soil frost; coniferous forest; wind climate; precipitation; snow
Abstract | View details | Full text in PDF | Author Info
Information on the temporal and spatial occurrence of strong winds and snow loads on trees is important for the risk management of wind- and snow-induced damage. Meteorological measurements made at 19 locations across Finland during 1961–2000 are used to understand the temporal and spatial occurrence of strong winds and large snow loads. A Kriging interpolation method was used to produce a spatial analysis of wind-speed events above 11 m s–1, 14 m s–1, and greater or equal to 17 m s–1 and snowfall accumulation above 20 kg m–2 and 30 kg m–2. According to the analysis, wind speeds exceeded 14 m s–1 at least 155 times and reached 17 m s–1 only 5 times at inland locations during the 40 years. Large snowfall accumulations were more frequent in the higher-elevation inland areas than along the coast. The snow load on trees exceeded 20 kg m–2 about 65 times a year when averaged over all 40 years, but was as high as 150 times a year during the mild 1990s. The maximum number of heavy snow-load events occurred in 1994 in northern Finland, consistent with a forest inventory by the Finnish Forest Research Institute in 1992–1994. The findings of this study imply that the risk of wind-induced damage is highest in the late autumn when trees do not have the additional support of frozen soil. In contrast, the risk of snow-induced damage is highest at higher-elevations inland, especially in northern Finland.

* Erratum (23 Oct 2012): The authors have requested inclusion of an additional author. Author information should thus be as follows: Hilppa Gregow, Ulla Puranen, Ari Venäläinen, Heli Peltola, Seppo Kellomäki & David Schultz
  • Gregow, Finnish Meteorological Institute, P.O. Box 503, FI-00101 Helsinki, Finland E-mail: hilppa.gregow@fmi.fi (email)
  • Puranen, Finnish Meteorological Institute, P.O. Box 503, FI-00101 Helsinki, Finland E-mail: up@nn.fi
  • Venäläinen, Finnish Meteorological Institute, P.O. Box 503, FI-00101 Helsinki, Finland E-mail: av@nn.fi
  • Peltola, University of Joensuu, Faculty of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: heli.peltola@uef.fi
  • Kellomäki, University of Joensuu, Faculty of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: seppo.kellomaki@uef.fi
  • Schultz, Finnish Meteorological Institute, P.O. Box 503, FI-00101 Helsinki, Finland E-mail: ds@nn.fi

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles