Current issue: 58(5)

Under compilation: 59(1)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'TreeSim'

Category : Climate resilient and sustainable forest management – Research article

article id 23067, category Climate resilient and sustainable forest management – Research article
Lucas N. López, Hanne K. Sjølie, Abbas Nabhani, Francisco X. Aguilar. (2024). Impacts of biodiversity and carbon policies on the management of Norwegian forest and its ecosystem services. Silva Fennica vol. 58 no. 4 article id 23067. https://doi.org/10.14214/sf.23067
Keywords: simulation; optimization; site productivity; bio-economic modeling; NorFor; regional impacts; TreeSim
Highlights: National-level biodiversity and carbon forest sector policies modelled in a simulation-optimization framework; Impacts of policies on management along site productivity gradients estimated; Policies vary in impact across productivity gradients with regional implications.
Abstract | Full text in HTML | Full text in PDF | Author Info
Measures to enhance boreal forests’ biodiversity and climate change mitigation potential are high on the policy agenda. Site productivity influences management, ecological attributes, and economic outcomes. However, national-level analyses of management implementation in response to policies considering site productivity are lacking. We analyzed impacts of a carbon policy (Carb), a biodiversity policy (Bio) and a combined biodiversity and carbon policy (BioCarb) in Norway using a simulation-optimization framework, assessing impacts on forest management, timber harvest, ecological attributes, and carbon fluxes until year 2140. Management alternatives were simulated in the single-tree simulator TreeSim before being fed into a market model NorFor to compare policy outcomes to a business-as-usual (BAU) scenario. All policies led to decreased harvests. Old forests expanded from the current 3% to cover 21% or more of the productive forest area in all scenarios. Impacts of policies depended on site productivity. On low-productive land, management under Bio mirrored BAU, while the Carb and BioCarb policies yielded more set-asides. On high-productive land, management intensity under the Carb policy was similar to BAU but the Bio and BioCarb policies resulted in more set-asides and more old forest.  Thus, on low-productive land, the carbon policy showed to have the strongest impact on forest management, while on high-productive land, the biodiversity policy had the strongest impact. With geographical site-productivity gradients, the two policies exhibited different regional effects. The study shows that ex-ante analyses with appropriate tools can provide relevant information of multiple consequences beyond the stated aims which should be considered in policy design.
  • López, Inland Norway University of Applied Sciences, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, P.O. Box 2400, Koppang, Norway ORCID https://orcid.org/0009-0006-6860-3408 E-mail: lucas.lopez@inn.no (email)
  • Sjølie, Inland Norway University of Applied Sciences, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, P.O. Box 2400, Koppang, Norway ORCID https://orcid.org/0000-0001-8099-3521 E-mail: hanne.sjolie@inn.no
  • Nabhani, Inland Norway University of Applied Sciences, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, P.O. Box 2400, Koppang, Norway E-mail: abbas.nabhani@inn.no
  • Aguilar, Swedish University of Agricultural Sciences, Department of Forest Economics, SE-901 83 Umeå, Sweden E-mail: francisco.aguilar@slu.se

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles