Current issue: 58(5)
Disturbances caused by the European spruce bark beetle (SBB; Ips typographus L.) on Norway spruce (Picea abies (L.) H. Karst.), have increased immensely across Central and Northern Europe, and are expected to increase further as a result of climate change. While this trend has been noted in Finland, so far limited research has been published. To support proper SBB risk management in Finland, we compared stand properties between salvage loggings due to SBB damage during 2012–2020 (4691 cases) and spruce stands free of SBB damage. Also, we explored the role of landscape attributes as drivers of SBB damage. We considered the forest stand attributes of site fertility class, stand development class, soil type, stand mean diameter at breast height and mean stand age. Considered forest landscape attributes were the distance from SBB-damaged stands to the closest clear-cut, to previous-year SBB-damaged stands and to the previous-year wind-damaged stand. We used nationwide forest logging and forest stock data, and analysed forest stand attributes using chi-squared and Mann-Whitney U tests and landscape attributes using generalised linear mixed models. Based on our findings, the SBB didn’t damage stands randomly, but prevailed in mature stands (high age and high mean diameter at breast height), in herb-rich heath forest site types and in semi-coarse or coarse heath forest soil soils. We found correlation between the landscape variables and the number of salvage loggings, with a higher number of loggings due to SBB damage close to clear-cuts. Our results help to find risk areas of SBB damage.