Current issue: 58(1)

Under compilation: 58(2)

Scopus CiteScore 2021: 2.8
Scopus ranking of open access forestry journals: 8th
PlanS compliant
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'decaying wood'

Category : Research article

article id 479, category Research article
Ken Olaf Storaunet, Jørund Rolstad, Ivar Gjerde, Vegard S. Gundersen. (2005). Historical logging, productivity, and structural characteristics of boreal coniferous forests in Norway. Silva Fennica vol. 39 no. 3 article id 479. https://doi.org/10.14214/sf.479
Keywords: boreal forest; stand structure; decaying wood; forest history; naturalness; selective logging; dead trees
Abstract | View details | Full text in PDF | Author Info
Conservation of forest biodiversity has brought about an interest in evaluating the naturalness of forests, and to locate and protect semi-natural and old-growth forests in the Fennoscandian countries. However, it is not always clear how natural these forests really are, and how the past management history has affected their present structural composition. We studied the relationships between cut stumps from historical logging activity (50–100 years ago) and forest structural characteristics of today in a total of 385 0.25 ha plots in three boreal coniferous forests which are parts of National Nature Reserves in Norway. We also studied how forest productivity influenced these relationships. In plots with negligible logging impact we found the amount of living trees, dead wood, and size of the oldest trees mainly to increase with increasing productivity, whereas the age of the oldest trees decreased. The amount of deciduous trees was generally low irrespective of productivity. The intensity of logging did not consistently influence most of these forest structural variables, neither at low- nor at high-productive sites. The only consistent relationship in all study areas was a decreasing amount of dead wood with increasing logging intensity at high-productive sites. Also, the decay class distribution of dead wood was more right-skewed (indicating on-going accumulation of dead wood) the more logging had occurred at high-productive sites. Except from the effects on dead wood, previous logging does not show up as a major determinant of other stand structures of today.
  • Storaunet, Norwegian Forest Research Institute, Høgskolevegen 8, NO-1432 Ås, Norway E-mail: ken.storaunet@skogforsk.no (email)
  • Rolstad, Norwegian Forest Research Institute, Høgskolevegen 8, NO-1432 Ås, Norway E-mail: jr@nn.no
  • Gjerde, Norwegian Forest Research Institute, Fanaflaten 4, NO-5244 Fana, Norway E-mail: ig@nn.no
  • Gundersen, Norwegian Forest Research Institute, Fanaflaten 4, NO-5244 Fana, Norway E-mail: vsg@nn.no

Category : Research note

article id 91, category Research note
Raisa Mäkipää, Tapio Linkosalo. (2011). A non-destructive field method for measuring wood density of decaying logs. Silva Fennica vol. 45 no. 5 article id 91. https://doi.org/10.14214/sf.91
Keywords: coarse woody debris; carbon stock; decaying wood; wood decomposition; penetrometer; pilodyn
Abstract | View details | Full text in PDF | Author Info
Decaying dead wood density measurements are a useful indicator for multiple purposes, such as for estimating the amount of carbon in dead wood and making predictions of potential diversity of dead wood inhabiting fungi and insects. Currently, qualitative decay phases are used as wood density estimates in many applications, since measuring the density is laborious. A quantitative measure of density would, however, be preferred over the qualitative one. Penetrometers, which are commonly used for measuring the density of standing trees, might also be applicable to dead wood density measurements. We tested the device for making quick, quantitative measurements of decaying logs. The penetrometer measures the depth into which a pre-loaded spring forces a pin in the wood. We tested pins of 5 and 10 mm diameter together with an original 2.5 mm pin and compared the results with gravimetric density measurements of the sample logs. Our results suggest that the standard pin works for less decayed wood, but for more decomposed wood, the thicker 5 mm pin gave more reliable estimates when the penetration measures were converted to densities with a linear regression function (R2 = 0.62, F = 82.9, p = 0.000). The range of wood densities successfully measured with the 5 mm pin was from 180 to 510 kg m–3. With the 10 mm pin, the measuring resolution of denser wood was compromised, while the improvement at the other end of density scale was not large. As a conclusion, the penetrometer seems to be a promising tool for quick density testing of decaying logs in field, but it needs to be modified to use a thicker measuring pin than the standard 2.5 mm pin.
  • Mäkipää, The Finnish Forest Research Institute, Vantaa, Finland E-mail: raisa.makipaa@metla.fi (email)
  • Linkosalo, The Finnish Forest Research Institute, Vantaa, Finland E-mail: ts@nn.fi

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles