Current issue: 58(5)

Under compilation: 59(1)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'forks'

Category : Research article

article id 1461, category Research article
Ludmila Novitskaya, Nadezhda Nikolaeva, Natalia Galibina, Tatiana Tarelkina, Ludmila Semenova. (2016). The greatest density of parenchyma inclusions in Karelian birch wood occurs at confluences of phloem flows. Silva Fennica vol. 50 no. 3 article id 1461. https://doi.org/10.14214/sf.1461
Keywords: Betula pendula; patterned wood; parenchyma; branch attachments; forks; sucrose content
Highlights: Dark-colored inclusions creating the figured pattern in Karelian birch wood consist of storage parenchyma cells; Their greatest density is formed above branch attachments and below forks; In these zones, the sucrose content is elevated since photoassimilate flows of the trunk and branches merge into one pathway; A high level of sucrose enhances the differentiation of parenchyma cells.
Abstract | Full text in HTML | Full text in PDF | Author Info

The specific pattern of the wood of Karelian birch (Betula pendula Roth var. carelica (Merckl.) Hämet-Ahti), is created mainly by dark-coloured inclusions of parenchyma tissue. Our study revealed that the greatest density of parenchyma inclusions in Karelian birch wood is observed above branch attachments to the trunk and below forks. In the place of branch attachment, phloem flows of photoassimilates (sucrose) from the branch and along the trunk merge into one pathway, causing a rise in sucrose content in tissues there. In the area below the fork, sucrose flows from two (or more) trunk axes are combined. Many studies have demonstrated that elevated sucrose level is associated with the differentiation of parenchyma. We believe that where large phloem fluxes merge a high level of sucrose promotes mass differentiation of parenchyma cells instead of fibers and vessels. As a result, the density of the figured pattern in the wood increases. The obtained data have a practical value and can be used in developing recommendations for Karelian birch cultivation.

  • Novitskaya, Forest Research Institute, Karelian Research Center, Russian Academy of Sciences, Pushkinskaya str. 11, 185910, Petrozavodsk, Russia E-mail: ludnovits@rambler.ru (email)
  • Nikolaeva, Forest Research Institute, Karelian Research Center, Russian Academy of Sciences, Pushkinskaya str. 11, 185910, Petrozavodsk, Russia E-mail: kar-birch@mail.ru
  • Galibina, Forest Research Institute, Karelian Research Center, Russian Academy of Sciences, Pushkinskaya str. 11, 185910, Petrozavodsk, Russia E-mail: galibina@krc.karelia.ru
  • Tarelkina, Forest Research Institute, Karelian Research Center, Russian Academy of Sciences, Pushkinskaya str. 11, 185910, Petrozavodsk, Russia E-mail: karelina.t.v@gmail.com
  • Semenova, Forest Research Institute, Karelian Research Center, Russian Academy of Sciences, Pushkinskaya str. 11, 185910, Petrozavodsk, Russia E-mail: mi7enova@gmail.com

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles