Current issue: 58(4)
In southern Lapland, 70% of drained peatland forests have a peat layer thickness of less than one metre. On these sites, the question is how the subsoil under the peat affects groundwater level and thus timber harvesting. The aim of this study was to investigate the effect of the peat layer (<1 m) and subsoil on the groundwater level and its variation during the growing season (non-frost) by modelling the factors affecting water level. In sandy soils, the groundwater level rose by 20 cm when the peat layer thickness increased from 20 to 70 cm. In silty soils the effect of the peat thickness on groundwater remained minor. When the subsoil was sand or coarser, the groundwater level was usually deeper than when it was silty or finer. The effect of stand volume (m–3 ha–1) on the groundwater level was rather weak albeit significant. The model explained a significant part of the groundwater surface variation, with a marginal coefficient of determination (R2) of 68%. It seems that the rutting of roads could be avoided in late summer if the precipitation is remarkably lower during that period, or if the subsoil is sandy with thin peat layer on top of it. Because the groundwater level affects the load-bearing capacity of timber-harvesting machinery, it is important to study this issue in more detail in the future.