Current issue: 58(4)

Under compilation: 58(5)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'medium density fiberboard'

Category : Research article

article id 257, category Research article
Nadir Ayrilmis. (2008). Effect of compression wood on dimensional stability of medium density fiberboard. Silva Fennica vol. 42 no. 2 article id 257. https://doi.org/10.14214/sf.257
Keywords: compression wood; linear expansion; linear contraction; thickness swelling; thickness shrinkage; medium density fiberboard; dimensional stability
Abstract | View details | Full text in PDF | Author Info
This study evaluated the effect of compression wood on dimensional stability of medium density fiberboards (MDF) manufactured from fiber furnishes of pine (Pinus nigra Arnold var. pallasiana) containing compression wood. Two panel types were manufactured from two different compression wood (CW) portion / normal wood (NW) portions in the furnish, 75/25 and 10/90, respectively. Linear and thickness variations of the panels exposed to various relative humidites at 20 °C, linear expansion/contraction and thickness swelling/shrinkage, were measured according to the procedures defined by DIN EN 318 (2005) standard test method. Panels made from fiber furnish containing 75% the CW had higher linear expansion and linear contraction values with an average value of 0.286% and 0.247% than those of panels made from fiber furnish containing 10% the CW with an average value of 0.184% and 0.152%, respectively. As for thickness swelling and thickness shrinkage properties, panels made from fiber furnish containing 75% the CW had the thickness swelling and thickness shrinkage values with an average of 5.042% and 4.402% while panels made from fiber furnish containing 10% the CW had the values with 3.621% and 2.861%, respectively. Consequently, based on the findings obtained from this study, expansion and swelling properties of the MDF panels were negatively affected by compression wood increase.
  • Ayrilmis, University of Istanbul, Faculty of Forestry, Department of Wood Mechanics and Technology, Bahcekoy, TR-34473 Istanbul, Turkey E-mail: nadiray@istanbul.edu.tr (email)
article id 358, category Research article
Turgay Akbulut, Nadir Ayrilmis. (2006). Effect of compression wood on surface roughness and surface absorption of medium density fiberboard. Silva Fennica vol. 40 no. 1 article id 358. https://doi.org/10.14214/sf.358
Keywords: compression wood; medium density fiberboard; surface properties; surface analysis
Abstract | View details | Full text in PDF | Author Info
Compression wood is undoubtedly one of the most important raw material variables in wood based panel manufacturing. This study evaluated effect of compression wood on surface roughness and surface absorption (flow distance) of medium density fiberboards (MDF) manufactured from furnishes of pine (Pinus nigra Arnold var. pallasiana) containing compression wood. Panels were manufactured from two different portions of the furnish, one of the portions having a compression wood/normal wood ratio of 75/25, and the other having a ratio of 10/90. Surface absorption and surface roughness were determined according to (EN 382-1) and (ISO 4287), respectively. It was found that panels made from furnish with a 75/25 ratio had a significantly lower surface absorption value (255.78 mm) than panels made from furnish with a 10/90 ratio (317.95 mm). Surface roughness measurements based on three roughness parameters, average roughness (Ra), mean peak-to-valley height (Rz), and maximum peak-to-valley height (Ry) were considered to evaluate the surface characteristics of the panels and supported the above findings as the panels made from furnish with a 75/25 ratio had slightly rougher surface with average values of 4.15 µm (Ra). From the tests performed, we conclude that increasing of the compression wood portion increased the surface roughness and decreased the surface absorption value.
  • Akbulut, Istanbul University, Faculty of Forestry, Bahcekoy, TR-34473 Istanbul, Turkey E-mail: ta@nn.tr
  • Ayrilmis, Istanbul University, Faculty of Forestry, Bahcekoy, TR-34473 Istanbul, Turkey E-mail: nadiray@istanbul.edu.tr (email)

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles