Current issue: 58(5)

Under compilation: 59(1)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'somatic incompatibility'

Category : Research article

article id 672, category Research article
Rimvydas Vasiliauskas, Jan Stenlid. (1998). Spread of Stereum sanguinolentum vegetative compatibility groups within a stand and within stems of Picea abies. Silva Fennica vol. 32 no. 4 article id 672. https://doi.org/10.14214/sf.672
Keywords: Picea abies; Stereum sanguinolentum; somatic incompatibility; decay; wounds
Abstract | View details | Full text in PDF | Author Info
A total of 57 naturally established Stereum sanguinolentum isolates was obtained from artificially wounded Picea abies stems in a forest area of 2 ha in Lithuania. Somatic incompatibility tests revealed 27 vegetative compatibility groups (VCGs) that contained 1–10 isolates. There was no spatial clustering of S. sanguinolentum VCGs within the forest area. The extent of S. sanguinolentum decay was analysed in 48 P. abies stems, 9–26 cm in diameter at breast height. Within 7 years of wounding, the length of S. sanguinolentum decay column in stems was 107–415 cm (291.5 ± 77.3 cm on average), lateral spread of the fungus at the butt was 38–307 cm2 (142.3 ± 66.8 cm2) and decayed proportion of the stem cross-section at the wound site (the butt) was 3–84% (36.8 ± 19.7%). In average, S. sanguinolentum VCG that infected 10 trees exhibited more slow growth inside the stem than VCGs that infected only one tree, and vertical growth varied to a greater extent within this VCG than among different VCGs. Correlation between stem diameter and vertical spread of S. sanguinolentum was not significant (r = –0.103). Despite uniformity of debarked area on all stems 7 years ago (300 cm2), open wound sizes on individual trees at the time of study were between 97–355 cm2 (215.1 ± 59.2 cm2) indicating large differences in wound healing capacity.
  • Vasiliauskas, Department of Plant Protection, Lithuanian University of Agriculture, LT-4324 Kaunas, Lithuania E-mail: rv@nn.lt (email)
  • Stenlid, Department of Forest Mycology & Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, S-750 07 Uppsala, Sweden E-mail: js@nn.se

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles