article id 237,
category
Research article
Abstract |
View details
|
Full text in PDF |
Author Info
The low-density airborne laser scanning (ALS) data based estimation methods have been shown to produce accurate estimates of mean forest characteristics and diameter distributions, according to several studies. The used estimation methods have been based on the laser canopy height distribution approach, where various laser pulse height distribution -derived predictors are related to the stand characteristics of interest. This approach requires very delicate selection methods for selecting the suitable predictor variables. In this study, we introduce a new nearest neighbor search method that requires no complicated selection algorithm for choosing the predictor variables and can be utilized in multipurpose situations. The proposed search method is based on Minkowski distances between the distributions extracted from low density ALS data and aerial photographs. Apart from the introduction of a new search method, the aims of this study were: 1) to produce accurate species-specific diameter distributions and 2) to estimate factual saw log recovery, using the estimated height-diameter distributions and a stem data bank. The results indicate that the proposed method is suitable for producing species-specific diameter distributions and volumes at the stand level. However, it is proposed, that the utilization of more extensive and locally emphasized reference data and auxiliary variables could yield more accurate saw log recoveries.
-
Peuhkurinen,
University of Joensuu, Faculty of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland
E-mail:
jp@nn.fi
-
Maltamo,
University of Joensuu, Faculty of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland
E-mail:
mm@nn.fi
-
Malinen,
Finnish Forest Research Institute, Joensuu Research Unit, P.O. Box 68, FI-80101 Joensuu, Finland
E-mail:
jm@nn.fi