Current issue: 58(5)

Under compilation: 59(1)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Jonathan J. Ruel

Category : Article

article id 5582, category Article
Jonathan J. Ruel, Matthew P. Ayres. (1996). Variation in temperature responses among populations of Betula papyrifera. Silva Fennica vol. 30 no. 2–3 article id 5582. https://doi.org/10.14214/sf.a9227
Keywords: Betula papyrifera; adaptation; photosynthesis; growth; temperature; climate warming; elevation
Abstract | View details | Full text in PDF | Author Info

How will global warming affect southern populations of boreal trees? In paper birch, Betula papyrifera (Betulaceae), alpine trees with an evolutionary history of relatively cool summers may be more sensitive to climate warming than valley populations. We evaluated this scenario by growing seedlings from different populations in four temperature treatments (mountain field site, valley field site, and two greenhouse rooms).

Populations from low elevations germinated earlier and had higher germination success than population from high elevations (16.8 vs. 22.0 d; 72% vs. 11%). At the valley site, seedlings from native populations grew faster than seedlings from higher elevations (mean ± SE = 0.25 ± 0.02 vs. 0.09 ± 0.04 mm · cm-1 · d-1) while at the mountain site, all seedlings grew at similar rates. Seedling grown in cooler environments had higher root : shoot ratios, perhaps to compensate for temperature limitations in nutrient uptake by roots. Leaf area varied among populations but was not affected by environmental differences across the field sites. Net photosynthetic rates at valley temperatures were higher for seedlings grown in the valley than for seedling grown in the mountains or the warm greenhouse (12.0 vs. 10.3 and 5.8 μmoles · m-2 · s-1), perhaps due to adaptive phenotypic adjustments. Climatic warming could rapidly produce important phenotypic changes in birch trees (e.g. decreased root : shoot ratio, reduced growth in alpine populations). On a longer time-scale, warming could also result in genetic changes as natural selection favours valley genotypes in alpine sites where they are presently rare.

  • Ruel, E-mail: jr@mm.unknown (email)
  • Ayres, E-mail: ma@mm.unknown

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles