Willows (Salix phylicifolia) were grown for four months in organic rich soil at four nutrient levels (fertilization with a micronutrient-macronutrient mixture of 0, 100, 500 and 1,000 kg ha-1 per month) and four CO2 concentrations (300, 500, 700 and 1,000 ppm). Nitrogen and phosphorus concentration of the willows were reduced at CO2 enhancement, the decrease being larger in the leave and roots than in the stems. Nitrogen content of the willows plus extractable nitrate-N in the soil coincided well with the doses of nitrogen supplied, but the corresponding sum of phosphorus in the plants and soil were smaller. The total nitrogen content of willows grown in unfertilized soil was nearly two times higher than the sum of the extractable nitrate-N in soil and N content of the cutting at the beginning of the experiment. The contents of nitrogen and phosphorus of the unfertilized willows were independent of CO2 concentration, suggesting that CO2 concentration did not affect through increased mineralization the availability of those nutrients to the willows.
Soil respiration readings are reported for three ameliorated peatland sites of different types, covering a period of four years, during which the sites were drained and treated with various fertilizers. Respiration is shown to increase exponentially with temperature, varying mostly in the range 100–500 mg CO2 m-2 h-1. The changes in soil respiration followed those in surface temperature with a time-lag of approximately 3–3.5 hours. At one site, where the groundwater table dropped by about 0.5 m after ditching, soil respiration increased 2.5-fold within a few weeks, whereas at the other two sites both the fall in the groundwater table and the resultant changes in soil respiration were small.
The fertilizers tested were slow-dissolving PK, fast-dissolving PK, wood ash, slow-dissolving PK + urea, slow-dissolving PK + Nitroform (urea formaldehyde) and slow-dissolving PK + urea + a micro-element mixture. Application of fast-dissolving PK + urea led to a rapid increase in soil respiration at the site poorest in nutrients, and slow-dissolving PK to a slow increase in respiration. The greatest, steady increase of all was achieved by treatment with ash. At the sites with a higher natural nutrient content the application of fertilizers usually led to a decline in soil respiration lasting 1–2 years, after which the initial level was normally regained. Treatment with micro-elements caused an initial fall in soil respiration values in all three biotopes, followed by a pronounced increase.
The PDF includes a summary in Finnish.