Current issue: 58(5)

Under compilation: 59(1)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'groundwater table'

Category : Article

article id 5212, category Article
Heikki Kurimo. (1984). Simultaneous groundwater table fluctuation in different parts of virgin pine mires. Silva Fennica vol. 18 no. 2 article id 5212. https://doi.org/10.14214/sf.a15391
Keywords: peatlands; hydrology; groundwater table; pine bogs; groundwater table fluctuations; pine swamp
Abstract | View details | Full text in PDF | Author Info

The study discusses the amplitude of the simultaneous groundwater table fluctuations in different parts of pine mires, and factors influencing it. The assumption generally used in hydrological computations that the simultaneous vertical fluctuation in the groundwater table in different parts of mires are equal does not hold good in detail. Numerous cases were detected where the fluctuation at one place did not correspond to that at another site to a statistically significant degree. The main reason for the unequal fluctuation at the different sites seems to be the difference in the microtopography and in the hydraulic conductivity between the sites.

The PDF includes a summary in Finnish.

  • Kurimo, E-mail: hk@mm.unknown (email)
article id 5173, category Article
Heikki Kurimo. (1983). Surface fluctuation in three virgin pine mires in eastern Finland. Silva Fennica vol. 17 no. 1 article id 5173. https://doi.org/10.14214/sf.a15088
Keywords: peatlands; hydrology; eastern Finland; mires; groundwater table; surface fluctuations; pine mire
Abstract | View details | Full text in PDF | Author Info

Altitude fluctuation of mire surface proportional to that of the groundwater table is presented for three virgin pine mires in Eastern Finland during the growing season 1982. The average amplitude of the surface fluctuation was found to be dependent on the period representing a certain type of weather, being limited to a certain maximum. The average amplitude of the surface fluctuation ranged from 18 to 45 mm; each of the mires followed a fluctuation scale of its own.

The daily fluctuation rates were low, generally 0.5–1 mm. No sudden fluctuation peaks occurred. Regularities in the surface fluctuation were caused by the duration of the period representing continuous sinking or rise of the groundwater table, and magnitude of it. The daily rate of the surface fluctuation related to that of the groundwater table was smaller in the beginning of such period than at the end of the same period. The one-directional rise or sinking of the altitude of the mire surface according to the groundwater table fluctuation is responsible for the autocorrelation of the long-term regression data.

The PDF includes a summary in Finnish.

  • Kurimo, E-mail: hk@mm.unknown (email)

Category : Article

article id 7637, category Article
Jouko Silvola, Jukka Välijoki, Heikki Aaltonen. (1985). Effect of draining and fertilization on soil respiration at three ameliorated peatland sites. Acta Forestalia Fennica no. 191 article id 7637. https://doi.org/10.14214/aff.7637
Keywords: wood ash; soil respiration; drained peatlands; nitrogen fertilization; groundwater table; PK fertilization
Abstract | View details | Full text in PDF | Author Info

Soil respiration readings are reported for three ameliorated peatland sites of different types, covering a period of four years, during which the sites were drained and treated with various fertilizers. Respiration is shown to increase exponentially with temperature, varying mostly in the range 100–500 mg CO2 m-2 h-1. The changes in soil respiration followed those in surface temperature with a time-lag of approximately 3–3.5 hours. At one site, where the groundwater table dropped by about 0.5 m after ditching, soil respiration increased 2.5-fold within a few weeks, whereas at the other two sites both the fall in the groundwater table and the resultant changes in soil respiration were small.

The fertilizers tested were slow-dissolving PK, fast-dissolving PK, wood ash, slow-dissolving PK + urea, slow-dissolving PK + Nitroform (urea formaldehyde) and slow-dissolving PK + urea + a micro-element mixture. Application of fast-dissolving PK + urea led to a rapid increase in soil respiration at the site poorest in nutrients, and slow-dissolving PK to a slow increase in respiration. The greatest, steady increase of all was achieved by treatment with ash. At the sites with a higher natural nutrient content the application of fertilizers usually led to a decline in soil respiration lasting 1–2 years, after which the initial level was normally regained. Treatment with micro-elements caused an initial fall in soil respiration values in all three biotopes, followed by a pronounced increase.

The PDF includes a summary in Finnish.

  • Silvola, E-mail: js@mm.unknown (email)
  • Välijoki, E-mail: jv@mm.unknown
  • Aaltonen, E-mail: ha@mm.unknown

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles